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Supplementary Text 

 

S1. Two-Mode-Approximation (TMA) model and the eigenmode evolution. 

In this section we briefly review the two-mode approximation (TMA) model and the 

eigenmode evolution in whispering-gallery-mode (WGM) microcavities with 

nanoscatterer-induced broken spatial symmetry, as described briefly in the main text. 

This will help to understand the basic relationship between asymmetric backscattering of 

counter-propagating waves and the resulting co-propagation, non-orthogonality, and 

chirality of optical modes. We furthermore derive how the chirality of a lasing mode can 

be measured by weakly coupling two waveguides to the system. As a complementary 

schematic of the setup shown in Fig.1 in the main text, Fig. S1 presents the details of the 

involved parameters and the input/output signal directions for clarification. 

 

The TMA model used in our analysis was first phenomenologically introduced for 

deformed microdisk cavities
5,8

 and was later rigorously derived for the microdisk with 

two scatterers
1
. The main approach is to model the dynamics in the slowly-varying 

envelope approximation in the time domain with a Schrödinger-like equation 

 
d

i
dt
    (S.1) 



2 
 

Here,   is the complex-valued two-dimensional vector consisting of the field 

amplitudes of the CCW propagating wave CCW  and the CW propagating wave CW . 

The former corresponds to the 
ime 

angular dependence in real space, and the latter to 

ime 
; the positive integer m is the angular mode number. Since the microcavity is an 

open system, the corresponding effective Hamiltonian, 

c

c

A

B

 
   

 
 (S.2) 

is a 2x2 matrix, which is in general non-Hermitian.  

 

 

Fig. S1. Schematic of the setup with the definitions of the parameters and signal 

propagation directions. ,inja  ( ,outja ) denotes the input (output) signal amplitude from the 

j-th port. 0 , 1  are the cavity decay rate and the cavity-waveguide coupling coefficient, 

respectively. 1d ( 2d ) denotes the effective scattering size factor of the first (second) 

nanoscatterer (corresponding to the spatial overlap between the scatterer and the optical 

mode), which is varied by changing the distance between the scatterer and the 

microresonator.  The angle   denotes the relative phase angle between the scatterers.  
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The real parts of the diagonal elements c  are the frequencies and the imaginary parts 

are the decay rates of the resonant traveling waves. The complex-valued off-diagonal 

elements A  and B  are the backscattering coefficients, which describe the scattering from 

the CW (CCW) to the CCW (CW) travelling wave. In general, in the open system the 

backscattering is asymmetric, A B , which is allowed because of the non-Hermiticity 

of the Hamiltonian. The complex eigenvalues of H are,  

c AB    (S.3) 

to which the following complex (not normalized) right eigenvectors are associated,  

 
A

B


 
   

  

. (S.4) 

As shown in the text, the asymmetric scattering is closely related with the evolution of 

the eigenmodes, especially in the vicinity of the exceptional points (EP), where either of 

the backscattering coefficients A  or B  is zero and both the eigenvalues (S.3) and the 

eigenvectors (S.4) coalesce
2,3,9,10

. To verify this interesting feature, we specifically 

checked the eigenmode evolution in our system both theoretically and experimentally. 

For the particular case of the WGM microtoroid perturbed by two scatterers the matrix 

elements of H  are determined as follows, 

    
0 1 1 2 2

0 1
1 1 2 2

2
=

2
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     


    

      (S.5) 
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1 1 2 2( ) ( ) imA V U V U e      (S.6) 

 
2

1 1 2 2( ) ( ) imB V U V U e      (S.7) 

where    denotes the intrinsic cavity resonant frequency, and    and    are the cavity 

decay rate and the cavity-waveguide coupling coefficient. The quantities 2 jV  and 2 jU  

are given by the complex frequency shifts for positive- and negative-parity modes 

introduced by j-th particle ( 1,2)j   alone. These quantities can be calculated for the 

single-particle-microdisk system either fully numerically [using, e.g., the finite-difference 
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time-domain method
11

 (FDTD), the boundary element method
12

 (BEM)], or analytically 

using the Green’s function approach
13

 for point scatterers with 0jU  . Here we used the 

finite element method
14

 (FEM). Note that   or   can be set to zero by choosing proper 

values for   and for the scatterer strength 2V . In our simplified model jU  is set to zero 

since j jU V .  

 

Figure S2 presents the evolution of the eigenfrequencies of our system (obtained with 

FEM simulations) as the phase difference angle   and the effective size factor d are 

tuned. The EPs can be clearly observed where the eigenfrequencies coalesce, as pointed 

out in both Fig.S2A and S2B.  

 

 

Fig. S2. The eigenmode evolution of the non-Hermitian system as a function of the 

effective size factor d and the relative phase angle   between the scatterers. (A) Real part 

of the eigenmodes  . (B) Imaginary part of the eigenmodes  .Two exceptional points 

are clearly seen.  EP: Exceptional Point. 
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S2. Experimental observation of an EP by tuning the size and position of two 

scatterers. 

In our experiments with a silica microtoroid WGM resonator, we chose a mode for which 

there was no observable frequency splitting in the transmission spectra before the 

introduction of the scatterers. We probed the scatterer-induced chiral dynamics of the  

 

Fig. S3. Experimentally obtained mode spectra as the relative phase angle   between the 

scatterers was varied.  increased continuously from (i) to (viii). Mode coalescence is 

clearly seen in (v). Modes bifurcated again when   was increased further (vi-viii) . 

 

WGMs, using two silica nanotips whose relative positions (i.e., relative phase angle β) 

and sizes within the evanescent field of the WGMs were controlled by nanopositioners 

(Fig. 1).  The size ratio of the scatterers was tuned by enlarging the volume of one of the 

nanotips within the resonator mode field while keeping the volume of the other nanotip 

fixed.  

 

The evolution of the eigenmodes of the system was obtained by coupling two waveguides 

to the system (Fig. 1& S1) and monitoring the transmission spectra (Fig. S3) as the 

wavelength of a tunable laser was scanned. The two eigenmodes coalesced clearly as the 
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phase difference angle   between the 1
st
 and the 2

nd
 nanoscatterer was varied to the 

vicinity of the EP but bifurcated again as   was further increased. We also checked the 

evolution of the eigenfrequencies when the effective size of the 2
nd 

scatterer was varied at 

different phase difference angles  .  

Fig. S4. Experimentally obtained evolution of eigenfrequencies as the relative size of the 

scatterers was varied at different relative phase angles  . (A) Difference of the real 

parts of the eigenfrequencies (frequency splitting or frequency detuning). (B) Imaginary 

parts (linewidths) of the eigenfrequencies. 

 

 

Fig. S5. Experimentally obtained evolution of the splitting quality factor as a function of 

  for fixed relative size factor.  
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In Fig.1C of the main text, we presented the evolution of the frequency splitting 2g, 

linewidth difference γdiff  and the sum γsum of the linewidths of split modes as a function of 

the relative phase angle β. In Figs. S4 & S5 we provide more experimental results to 

further clarify how the relative phase angle β and the relative size factor of the scatterers 

affect the spectra of the split resonance modes and help to drive the system to the vicinity 

of an EP. Figure S4 depicts the evolution of the amount of frequency splitting and the 

linewidths of the split resonances as a function of the size factor at different values β 

implying that when the relative size factor is varied, the system can or cannot reach an EP 

depending on the relative phase angle β between the scatterers: For some values of β, the 

system experiences avoided crossing. The resolvability of the frequency splitting in a 

transmission spectrum was previously quantified by the splitting quality factor, which is 

defined as the ratio of the frequency splitting 2g to the sum γsum of the linewidths of the 

split resonances
15

. Experimental results shown in Fig. S5 clearly show that when the 

resonances coalesce at an EP, the splitting quality factor reaches its minimum.  

 

S3. Emission and chirality analysis for the lasing cavity  

As a consequence of the non-Hermitian character of the Hamiltonian the eigenvectors 

(S.4) are in general not orthogonal. This happens whenever the backscattering is 

asymmetric, A B , as * A B     . The asymmetric backscattering A B
 
also 

implies that both modes have a dominant component that increases the closer the system 

is steered to the EP (Fig. S6). This corresponds to a dominant propagation direction in 

real space. We quantify this imbalance by the chirality
6,7

  

 
TMA

A B

A B






 . (S.8) 

In contrast to the original definition of the chirality
1,4,5,8

, this chirality parameter also 

provides information on the sense of rotation not just on its absolute magnitude. For a 

balanced contribution, A B , the chirality is close to 0 . In the case where the CCW 

(CW) component dominates, A B ( A B ), the chirality approaches 1 (-1) and both 

modes become copropagating. By carefully tuning the position of one of the scatterers, it 
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is possible to create a situation of full asymmetry in the backscattering, i.e. 1  . In 

this case, either A  or B vanishes, while the other component is nonzero
1
. Solving the 

Schrödinger Eq. (S.1), we get the eigenfrequencies of the system Eq. (S.3). The 

corresponding eigenmodes Eq. (S.4) can be further expressed as 

 

Fig. S6. Weights of CW and CCW components in the eigenmodes as the relative phase 

difference   between the two nanoscatterers is varied, away from EP and in the vicinity 

of EP, with two different size factors of the 2
nd 

nanoscatterer, according to Eq.(S.9). 

Evolution of the eigenfrequencies and CW (CCW) weights in the eigenmodes as   is 

varied for (A) and (B) V1=1.5-0.1i, V2=1.0997-0.065i, and (C) and (D) V1=1.5-0.1i, 

V2=1.4999-0.104i. Note that for the size factor used in (A) and (B) eigenmodes cannot 

reach the EP whereas for the size factor used in (C) and (D)  the eigenmodes can reach 

the EP and a strong asymmetric distribution of the CW/CCW weights appears in the 

vicinity of EP. Insets are the zoom-in plots in the vicinity of EP. In (C) and (D), two EPs 

are clearly seen. 
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 /ccw cwB A    .

 

(S.9) 

In the experiments, the chirality (S.8) of the eigenmodes of the system can be obtained by 

coupling waveguides to the system (as shown in Fig. S1) and by inducing lasing (e.g., 

Raman lasing in silica resonators or lasing from Erbium ions in Erbium doped silica 

resonators) within the system. Using coupled mode theory and the assumption that there 

is no backscattering of light from the waveguide into the cavity one can relate the 

amplitudes in the waveguide to the coefficients A and B  via  

 
* *

, 1 1cw out CWa B       (S.10) 

 

* *

, 1 1ccw out CCWa A       . (S.11) 

Hence, the chirality of the lasing system can be obtained from the waveguide amplitudes 

as 

 

2 2

, ,

lasing 2 2

, ,

,
ccw out cw out

ccw out cw out

a a

a a






 (S.12) 

where ,ccw outa  can be either 1,outa  or 4,outa  and ,cw outa  can be either 2,outa or 3,outa . The same 

formula can also be used in full numerical calculations to extract the chirality of the 

quasi-bound states of the system for comparison to the result of the two-mode 

approximation of Eq. (S.8).  

 

S4. Chirality analysis and comparison between the lasing and the transmission 

models 

In this section we extend the TMA to describe the transmission of light through 

waveguide-cavity systems as illustrated in Fig. S1, which is also the setup for the results 

and the analysis shown in Fig. 3 of the main text. We allow for incoming waves from the 

upper left with amplitude 1,ina  and from the upper right with amplitude 2,ina , such that it is 

possible to couple into the WGMs in either the CW or the CCW directions. Based on 

coupled mode theory we add a coupling term to Eq. (S.1) and arrive at 
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2,in

1

1,in

ad
i i

adt

 

    
 

 (S.13) 

with 1  denoting the waveguide-resonator coupling coefficient. The losses due to 

coupling of the cavity to the waveguides are included in the diagonal elements c  of the 

Hamiltonian (S.2). Assuming that there is no backscattering of light between the 

microcavity and the waveguides (which is justified when the distance between cavity and 

waveguides is sufficiently large) we derive the outgoing amplitudes in the lower 

waveguide as 

 
*

3,out 1 CWa      (S.14) 

 
*

4,out 1 CCW.a     (S.15) 

We can choose 1  to be real as we are only interested in the absolute values of 3,outa  and

4,outa . For a CW excitation with 1,ina at a fixed frequency e we find from Eqs. (S.14)-

(S.15) 

 1
3,out 1,in2

( )

( )

c e

c e

i
a a

AB

 



 


  
    

 (S.16) 

 1
4,out 1,in2( )c e

i A
a a

AB








  
 (S.17) 

Analogously, for a CCW excitation via 2,ina  we find 

 1
3,out 2,in2( )c e

i B
a a

AB








  
 (S.18) 

 1
4,out 2,in2

( )

( )

c e

c e

i
a a

AB

 



 


  
 (S.19) 

The asymmetric backscattering expresses itself here by the fact that the numerator of 

4,outa in Eq. (S.17) is proportional to A , whereas the numerator of 3,outa
 
in Eq.(S.18) is 
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proportional to B . Assuming that the input amplitudes 1,ina  and 2,ina  are the same, we 

find the chirality as defined by Eq. (S.8) in terms of the transmission amplitudes to be 

 
4,out 3,out

transmission

4,out 3,out

a a

a a






 (S.20) 

where 4,outa ( 3,outa ) has been obtained by injecting light at port 1 (2). The crucial difference 

between the formulas for the chirality as measured in the lasing system [Eq. (S.12)] and 

the formula for the chirality as measured in a transmission experiment [Eq. (S.20)] is that 

in the former the intensities, 
2

a , of the outgoing waveguide modes are used, whereas in 

the latter only the modulus of the amplitudes, a , appear. 

 

In order to compare the two different chirality formulas, Eqs. (S.12) and (S.20), we have 

performed numerical calculations using a finite element method where we have solved 

the inhomogeneous Helmholtz equation. The calculations were restricted to the 

transverse magnetic (TM) polarization in two dimensions. The geometry of the system is 

shown in Fig.S1. The parameters for the waveguides and scatterers have been chosen 

such that the scatterers perturb the eigenvalues of the system much stronger than the 

waveguides coupled to the resonator. Therefore, the chirality is determined primarily 

through the scatterers, similar to the experiment. One of the scatterers had a fixed 

position, situated at an angle of / 2 with respect to the waveguides. The second scatterer 

was situated on the opposite side of the disk and its position was given by the angle   

between the scatterers. The effective size factor, 2d , of the second scatterer (which is the 

spatial overlap between the scatterer and the optical mode) was varied by changing the 

distance between the scatterer and the resonator. In the calculations the angle  was 

varied between 2.91 and 3.06, and the size factor 2d was varied between 0.01 and 0.04. 

The waveguides, as well as the microresonator had an effective refractive index of 

1.444n  . The system was excited by injecting light into the waveguides at any of the 

ports 1-4 with frequency e , achieved by placing a line source ( )f y  at the 

corresponding side of the system (marked by a black dashed line in Fig. S1), which 
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excites only the fundamental mode ( , ) xi x

ef y e
 

 of the waveguide. Both, the spatial 

profile ( , )ef y  of the fundamental mode, as well as the propagation coefficient x  were 

found through matching conditions at the dielectric waveguide interface
16

. The 

computational domain was truncated by a reflectionless perfectly matched layer, which 

absorbs all scattered outgoing waves. The incoming and outgoing amplitudes 1 4,{in,out}a   of 

the waveguide modes were extracted by projecting the solution of the inhomogeneous 

Helmholtz equation onto the individual (fundamental) waveguide modes.  

 

In Fig. S7 we compare the chirality as determined from the eigenvalue calculations for 

the lasing cavity with the chirality as determined from the transmission calculations. The 

chirality is obtained under variation of the two positional parameters ( 2,d  ) of the 

second scatterer. We chose to vary two parameters in order to be able to exactly reach the 

exceptional points where the chirality features an absolute maximum, i.e. 1   . In the  

 

Fig. S7. Comparison of the chirality obtained (A) through a full numerical eigenvalue 

calculation by Eq. (S.12) and (B) through a full numerical transmission calculation by 

Eq. (S.20). The dependence of the chirality is plotted with respect to the position of the 

second scatterer given by both the angle between the scatterers,  , as well as by the 

effective size factor, 2d . Both formulas yield very similar values for the chirality 

validating  Eqs. (S.12) and (S.20). 
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parameter range shown in Fig. S7 two pairs of EPs are depicted where each pair features 

two EPs of opposite chirality. The pattern of EP pairs is roughly repetitive when 

extending the scanned interval of angle  as long as the scatterer does not come close to 

one of the attached waveguides. In the calculations we observe an excellent agreement 

between the two chirality definitions such that we can indeed assume that both methods 

yield a good estimate for the internal chirality of the whispering gallery modes induced 

by the presence of the two scatterers.  

 

In a next step we explicitly compared the full numerical results to the results from the 

TMA model. For this, we calculated the parameters A , B , and c  through separate 

eigenvalue calculations for each of the scatterers, where no waveguides were attached to 

the system. The value for the coupling coefficient 1  has been determined from 

transmission calculations from port 1 to port 3 with no scatterers present. In Fig. S8 the 

chirality definitions of Eqs. (S.8), (S.12) and (S.20) are compared to each other for the 

case that the distance of the 2
nd  

nanotip is fixed at the same distance as the 1
st 

nanotip, i.e. 

2 0.02d  . Similar to Fig. S7 we again observe an excellent agreement between the  

  

 

Fig. S8. Comparison of the chirality definitions for TMA , lasing and transmission . In the 

calculations the second scatterer has an effective size factor 2 0.02d 
 
and the angle  is 

varied. 



14 
 

 

Fig. S9. Asymmetric backscattering intensities
2

/CW CCWB  from a CW to a CCW wave 

[left panel: (A) and (C)] and from a CCW to a CW mode [right panel: (B) and (D)]. The 

results are obtained from a full numerical transmission calculation using a finite element 

method [upper panel: (A) and (B)], as well as from the TMA model [lower panel: (C) and 

(D)]. Both models yield the same frequencies at which the backscattering intensities 

peak, but the overall intensities differ from each other since additional scattering 

processes as from the waveguide to the resonator are not included in the TMA. In each 

panel the backscattering intensity is shown as functions of the injected frequency 

detuning e c  and the angular position  of the second nanotip. Dashed lines mark the 

local minima of backscattering intensities, corresponding to the chirality maxima and 

minima. The asymmetric backscattering is shown by the shifted intensity patterns with 

respect to the angle  . 

 

numerical calculations. For the TMA model we find that it correctly predicts the angles at 

which the chirality becomes minimal/maximal, but the exact values differ. The reason for 
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this is that the TMA model does not include other scattering processes as, for example, 

from the resonator to the waveguide.   

 

The asymmetric backscattering which results in the intriguing chirality behavior in Fig. 

S8 can also be observed by looking at the normalized backscattering intensity 

2 22

ccw,out cw,in/CCWB a a
 
from the CW to CCW traveling mode and the similarly defined 

2

CWB . From Eq. (S.12) it follows that an exceptional point (with an absolute chirality 

maximum) is reached when either of the backscattering intensities 
2

/CW CCWB is zero. 

Hence, a chirality maximum (minimum) can be found by minimizing the backscattering 

intensity 
2

CCWB  (
2

CWB ). This strategy has also been used in the experiment and the 

corresponding data is shown in Fig. 2 of the main text. The EPs corresponding to 

opposite chiralities occur at slightly different angles  , which manifests itself by shifting 

the two backscattering intensity pattern 
2

/CW CCWB with respect to the angle   as shown 

in Fig. S9. Here, the angles   at which the backscattering 
2

/CW CCWB  becomes minimal 

are indicated by dashed lines. In addition, both the results for the TMA model and the 

numerical transmission calculations are plotted. The frequencies at which the 

backscattering intensities 
2

/CW CCWB  peak match very well between the two models; 

however, the predicted overall intensities differ due to the differences in the models. 

 

S5. Directionality analysis for the biased input case in the transmission model 

As discussed in the main text, the intrinsic chirality is different from the directionality 

when light is injected into the resonator in a preferred direction such as in the CW or the 

CCW direction (i.e., we referred to this as the biased input). Our experiments described in 

the main text revealed that varying the relative distance (relative spatial phase) between 

the scatterers affects the amount of light coupled out of the resonator into the forward 

direction (i.e., in the direction of the input) and into the backward direction (i.e., in the  
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Fig. S10. Directionality with a biased input (CW) as a function of the relative phase 

difference between two scatterers (A). Summary of the results obtained in the numerical 

simulation and the fitting curve using the theoretical model. (B-F), Results of finite 

element simulations at different relative phase angles β but fixed size factor revealing the 

intracavity field patterns and output direction in the waveguides. β values are: (B) 2.590  

rad; (C) 2.617 rad; (D) 2.625 rad; (E) 2.631 rad; and (F) 2.653 rad. P1 and P2 denote 

the locations of the scatterers. 

 

opposite direction of the input); however, the amount of light coupled out of the resonator 

into the forward direction always remains higher than that in the backward direction.  

 

Figure S10 depicts the results of finite element  simulations with COMSOL validating 

our experimental observations presented in Figs. 2&3 in the main text. It is seen that 

directionality is always negative taking values between its minimum and maximum 

values by changing the relative phase angle. Decreasing directionality implies the 

presence of scattering into the direction opposite to the direction of the injected light. 

Backward scattering, however, remains always weaker than forward scattering. 

Simulations reveal that when the intracavity field forms a standing-wave pattern with 

well defined nodal lines, light couples out from the resonator in both the cw and ccw 

directions (Fig. S10B); however, when nodal lines are washed out and the field profile 
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deviates from the standing-wave pattern light couples out from the resonator in the 

direction of the input (Fig. S10D). A relation between the visibility of the nodal lines 

(and the standing-wave pattern) and the ratio of the light coupled into cw and ccw 

directions is clearly seen (Fig. S10). 
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