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1. Reaction-diffusion models for one-dimensional range expansions 
Populations expanding via short-range migration in one spatial dimension are often modeled by a 

reaction-diffusion equation, which is continuous in space and time: 
డ௡
డ௧ = ܦ డమ௡

డ௫మ +  S1     . (݊)ݎ݊
Here n(x,t) is the density of population at position x at time t; D is the dispersal coefficient, which is 
assumed to be constant in the simple model, and ݎ(݊) is the density-dependent per capita growth rate of 
the population. Many properties of this model can be obtained analytically by linearizing the growth term, 
(݊)ݎ݊ ≈  ଴. When colonization dynamicsݎ as (0)ݎ at low densities (Fig. S1); we will also denote (0)ݎ݊
are determined by the dynamics at the expansion edge, this approximation is quite accurate because 
population densities are low at the expansion front. Kolmogorov et. al. proved that, when ݎ(݊) is a 
monotonically decreasing function, this linearization is guaranteed to capture the expansion dynamics 
(55). Expansions described by the linearized growth term are called pulled because they advance via 
growth at the low-density front, which effectively pulls the waves forward. Importantly, the condition 
derived by Kolmogorov et. al. is sufficient but not necessary. In particular, the linear approximation 
continues to hold even when a small Allee effect is present. For larger Allee effects, dispersal from the 
faster growing high density region of the front dominates the growth at the low-density expansion edge, 



effectively pushing the wave forward. These 'pushed’ waves advance at a higher velocity than one would 
predict using just (17) (0)ݎ. 

Although the model (eqn. S1) can be analyzed in numerous ways (17, 18, 24), a solution using 
Fourier transforms is most useful for extending the results to the case of discrete space and time systems, 
such as in our experiments. Here, we briefly outline the solution to the continuous model using Fourier 
modes as described by van Saarloos (17). We then apply a similar analysis to a model appropriate for our 
experimental system, which was used to predict the linearized-growth-velocities in the main text. 

The spatial Fourier modes of the front can be written as: 
෤݊(ݍ, (ݐ = ׬ ,ݔ)݊ݔ݀ ௜௤௫ஶି݁(ݐ

ିஶ      S2 
where ݍ is the wave number of the Fourier modes. To obtain the spreading speed of a front, we start with 
an Ansatz assuming the Fourier modes are of the form ෤݊(ݍ, (ݐ = ෤݊(ݍ)݁ି௜ఠ(௤)௧. Substituting back in eqn. 
S1 gives the dispersal relationship (߱(ݍ) = ଴ݎ)݅ −  ଶ)). Assuming that the front moves with someݍܦ
constant asymptotic velocity, ݒ∗, we perform inverse Fourier transforms in the coordinate frame moving 
with the front (ߞ = ݔ −  :(ݐ∗ݒ

,ߞ)݊ (ݐ = ଵ
ଶగ ׬ ௜௤఍ି௜ሾఠ(௤)ି௩∗௤ሿ௧ஶ݁ ݍ݀

ିஶ      S3 
In the large time limit, only those modes near the saddle point of [ω(q) −  q] survive (60), which∗ݒ
results in the following condition: 

∗ݒ = ௗఠ
ௗ௤ ቚ௤∗       S4 

where ݍ∗ is the saddle point. Further, in the co-moving reference frame, the wave profile neither grows 
nor decays in time, so the imaginary part of the exponent must vanish: 

൯(∗ݍ)൫߱݉ܫ − ∗ݒ(∗ݍ)݉ܫ = 0     S5 
This gives the set of relationships that can be used to calculate the asymptotic velocity: 

∗ݒ = ூ௠(ఠ(௤))
ூ௠ (௤) ቚ௤∗ = ௗఠ

ௗ௤ ቚ௤∗             S6 



The above two relationships uniquely determine the asymptotic speed ݒ and ݍ∗. The exponential decay 
rate of the population density at the front then follows eqn. S3 since ߣ =  The results are .(∗ݍ) ݉ܫ

∗ݒ = 2ඥݎ଴ܦ, ߣ = ට௥బ
஽  .     S7 

 
2. Expansions in discrete space and time models 
The discretized form (corresponding to the experimental protocol) of the F-KPP equation can be 

written as: 
݊௫,௧ା୼௧ = ݃୼௧ ൬݊௫,௧ + ௠

ଶ ൫݊௫ା୼௫,௧ + ݊௫ି୼௫,௧ − 2݊௫,௧൯൰,    S8 
where ݔ is the spatial coordinate, ݐ is the cycle number, and  ݃୼௧(݊) describes total growth rate, i.e. 
݃୼௧(݊) is the product of the per capita growth rate and the population density. Upon linearization ݃୼௧(݊)  
can be written as: 

݃୼௧(݊) = ݊ ௘ೝబ౴೟
ௗ௜௟௨௧௜௢௡,      S9 

which corresponds to exponential growth at rate ݎ଴ followed by a dilution. Substituting the Fourier mode 
݊௫෦ = ݁௜௤௫ି௜  in the above linearized equation gives the dispersion relation: 

݁ି௜ఠ୼௧ = ௘ೝబ౴೟
ௗ௜௟௨௧௜௢௡ ሾ1 + (ݔݍ݅−)ℎݏ݋ܿ)݉ − 1)ሿ    S10 

Following the analysis of the continuous case, we use the saddle point approximation and require that the 
front is not changing in the co-moving reference frame. The resulting equations are similar to eqn. S6 and 
can be recast in a simpler form with the definitions of two real parameters  ߣ = ݏ and (ݍ)݉ܫ =  (߱)݉ܫ
and an observation that these equations correspond to the requirement that 

ݒ = ݉݅݊ఒவ଴ ቄݏ
ቅߣ ; 

compare to eqn. 3 in the main text. 
For small ݐ߂, one can analytically obtain corrections to the continuous results in eqn. S7 due to the 

discreteness of space. However, since in our experiments, ݐ߂ ∼ 4 hrs, which is longer than the time scale 



set by the growth rate (~2 hrs), the velocity and spatial decay rate have to be evaluated by minimizing 
eqn. S10 numerically. 

The magnitude of deviations between the continuous and discrete models are shown in Fig. S3. Note 
that the discrete dynamical equation describing the experiment is not the same as the discretized version 
of the F-KPP equation, which can be written as: 

݊௫,௧ା୼௧ = ݊௫,௧݁௥బ,೐೑೑୼௧ + ௘௙௙ܦ ୼௧
୼௫మ ൫݊௫ା୼௫,௧ + ݊௫ି୼௫,௧ − 2݊௫,௧൯   S11 

Comparing eqns. S9 and S11, the effective growth and diffusion rates in the continuous model should be 
expressed in terms of experimental parameters as follows: 

଴,௘௙௙ݎ = ଴ݎ − ௟௡(ௗ௜௟௨௧௜௢௡)
୼௧   

௘௙௙ܦ = ௠
ଶ

Δ௫మ
୼௧ (1 +  S12         (ݐ௘௙௙Δݎ

ݐ߂) = 4 hr, ݔ߂ = 1 well). The effective parameters can then be used in continuous models to compare 
them to the discrete space-time experimental model and evaluate the magnitude of 'corrections' that are 
introduced due to the discretization. 

The finite number of organisms per spatial patch also changes the velocity and spatial decay rate. 
Although stochastic effects obviously cause fluctuations in the velocity, the expectation value of the 
velocity is also reduced as compared to predictions that do not incorporate demographic stochasticity. The 
deviations have been shown to be of the order of  1

୪୭୥మ ே , where N is the number of individuals per unit 
length, when space and time are continuous (54). Moreover, the fronts have been shown to be steeper 
when demographic stochasticity is added (53, 54). We see this in our experiments, where, without 
accounting for the demographic stochasticity, the observed spatial decay rate is larger than predicted. This 
discrepancy vanished when we incorporated the effects of stochasticity in our predictions (Fig. S4).  

3. Cubic model of the Allee effect 
A generic model of the Allee effect was used for making the cartoon in Fig. 4 in the main text. In this 

model, the density dependence of growth is given by: 



ଵ
௡

ௗ௡
ௗ௧ = ௥బ

௔ ቀ1 − ௡
௞ቁ (݊ + ܽ)     S13 

This model shows no Allee effect for ܽ > ݇ (per capita growth rate monotonically decreases with 
increasing density), and a weak Allee effect for ܽ < ݇. Further, as ܽ is varied, the growth rate at low 
density remains constant and is given by ݎ଴. The transition from pulled to pushed waves occurs at 
ܽ = ݇/2 inside the weak Allee effect regime (64). 

 
4. A mechanistic growth model captures the Allee effect and shows a transition from pulled to 

pushed waves with increasing sucrose 
We developed a mechanistic model for yeast growth in our experiments. The model incorporates 

previously well-studied mechanisms such as Monod growth on glucose (61) and a Michaelis-Menten 
kinetics of sucrose hydrolysis (49, 52, 63). Using previously measured values of the model parameters 
(Table S1), we found that the magnitude of the Allee effect increases with the amount of sucrose in the 
medium. Importantly, the model also displayed a transition from pulled to pushed waves, consistent with 
the experimental observations in Fig. 5 (Fig. S7). This transition was observed for a wide range of model 
parameters and is a generic prediction of the model. To test for quantitative agreement between the model 
and the experiments, we fitted the parameters of the model to our independent measurements of the 
growth rates, and confirmed that the predicted velocities closely match experimental observations (Fig. 
S8). 

The model describes growth of yeast in the presence of glucose and sucrose, and assumes that there 
are no other limiting resources. Furthermore, while glucose is metabolized directly by the yeast, sucrose 
needs to be hydrolyzed to monosaccharides before it can be utilized. Although sucrose is hydrolyzed to 
glucose and fructose, we treat these sugars equivalently and refer to the combined concentration of the 
monosaccharides as the glucose concentration (49). This hydrolysis reaction is catalyzed by an enzyme 
invertase produced by yeast cells. Most of the invertase stays attached to the cell surface resulting in 
higher rates of hydrolysis in the immediate vicinity of the cell and creating a local cloud of glucose in 



excess of the bulk glucose concentration. Thus, yeast cell benefit from both the glucose produced by 
themselves and from the glucose produced by their neighbors (49). These dynamics are captured by the 
following Monod growth law and glucose consumption equation: 

ଵ
௡

ௗ௡
ௗ௧ = ௚೗೚೎

௚೗೚೎ା௞೒  ௠௔௫      S14ߛ
ௗ௚
ௗ௧ = −ܻ ௗ௡

ௗ௧ + ܸ݊      S15 
Here, the first equation describes cell division, where ݊ is the cell density, ݃௟௢௖ is the local glucose 

concentration around each cell, ݇௚ is the Michaelis-Menten constant for glucose utilization and ߛ௠௔௫ is 
the maximum division rate. The second equation gives the corresponding rate of utilization of glucose 
(݃), which is proportional to the division rate of the cells (the proportionality constant, ܻ, determines the 
carrying capacity of the population). The additional term, ܸ݊, corresponds to the production of glucose 
due to sucrose hydrolysis. The per capita rate of sucrose hydrolysis, ܸ, is given by 

ܸ = ௦ݒ ௦
௦ା௞ೞ = − ଵ

௡
ௗ௦
ௗ௧,      S16 

where ݏ is the sucrose concentration, ݒ௦ is the maximum rate of sucrose hydrolysis, and  ݇௦ is the 
Michaelis-Menten constant. Finally, the local glucose concentration around the cell is the sum of the bulk 
glucose concentration, and the additional cloud of glucose due to the sucrose hydrolysis on the cell 
surface. The contribution of this cloud is proportional to the rate of sucrose hydrolysis, and thus 

݃௟௢௖ = ݃ + ݃௘௙௙ܸ,      S17 
where ݃௘௙௙ is the proportionality constant that accounts for the glucose escape through diffusion (49). 

To infer model parameters, we measured growth rates in varying sucrose concentrations, and different 
cell densities. The growth rate measurements and the corresponding range expansions were carried out in 
9 different media: 0.125% glucose, and 0.008% glu + varying amounts of sucrose.  

Before we describe the specifics of how the model parameters were determined from the 
experimental data, it is important to discuss how each parameter contributes to the different aspects of the 
experimental data and demonstrate that the data contains sufficient information to constrain the model 



parameters. The yield parameter, ܻ, determines the number of cells that can be produced given a certain 
amount of glucose. For the growth rate measurements in pure glucose, ܻ therefore controls the population 
densities at which the growth rate precipitously drops to zero. We determined ܻ by fitting the model 
prediction to our growth measurement at high cell densities in 0.125% glucose (Fig. S9). The growth rate 
at low cell densities in pure glucose media is completely determined by ߛ௠௔௫  ܽ݊݀ ݇௚, and our data 
contained sufficient information to infer these parameters because we had low-density growth rate 
measurements in pure glucose as well as in several sucrose concentrations that produced varying local 
concentrations of glucose as specified by eqn. S17. The low-density growth rates at different sucrose 
concentrations also depend on ݇௦ ܽ݊݀ ݒ௦݃௘௙௙; therefore, we could use our low-density measurements to 
infer four model parameters ߛ௠௔௫ , ݇௚, ݇௦ ܽ݊݀ ݒ௦݃௘௙௙. 

The dynamics at high population densities depend not only on the product of ݒ௦ and ݃௘௙௙, but on the 
individual values of these parameters. In particular, higher values of ݒ௦ and lower values of ݃௘௙௙ (keeping 
their product fixed) result in a larger Allee effect and more cooperative growth because of the faster 
sucrose hydrolysis and greater sharing of glucose via diffusion away from the cell. Therefore the 
magnitude of the Allee effect at high sucrose concentration provided the last necessary constraint to 
determine all of the model parameters. 

Instead of directly fitting to the entire data set simultaneously, we used a modular approach of fitting 
the growth dynamics at low-density and high-density separately. We also bootstrapped on our data to 
determine the uncertainty in model parameters and model predictions. 

To obtain a set of low density growth parameters, we bootstrapped over the measured values of 
growth rates in each of the media, and fitted the parameters by minimizing the squared distance from the 
bootstrapped data using Python package scipy (curve_fit). All data at starting densities below OD 0.004 
was included, as indicated in Fig. S10. However, all outliers more than 2.5 SD away from the mean, were 
excluded from the analysis. Moreover, growth was unusually slow in one of the measurements, in 0.003% 



sucrose. This is the regime where the low-density growth rate is independent of sucrose concentration, 
since the concentration of sucrose is lower than that of glucose, which was 0.008%. Therefore, we 
excluded this particular condition while fitting the parameters. The bootstrapping procedure was repeated 
to obtain 100 sets of low-density growth parameters, ߛ௠௔௫ , ݇௚, ݇௦ ܽ݊݀ ݒ௦݃௘௙௙. Out of these, a few 
iterations of the curve_fit routine did not converge on the fit, leaving 89 sets of parameters for 
downstream analysis. Fig. S11 shows the low-density growth rates that the model predicts for each of the 
parameter sets. 

Next, for each of the 89 sets obtained above, we determined the individual parameters, ݒ௦ and ݃௘௙௙, 
keeping the product constant. As noted earlier, the relative magnitudes of these two parameters control 
the magnitude of the Allee effect. Therefore, parameters ݒ௦ and ݃௘௙௙were determined by minimizing the 
squared distance from growth rates at intermediate densities in 2%, 0.67% and 0.22% sucrose – the media 
that exhibit a substantial Allee effect. The sum of squared distance from all the data points in the selected 
regions of the cell densities was calculated for values of ݒ௦ ranging from 0.2 to 4 % OD-1hr-1, and the 
value of ݒ௦ minimizing the sum was chosen. These regions of cell densities were selected such that the 
growth rates increase with density (i.e. exhibit an Allee effect) and are summarized below: 

2% sucrose: OD 5x10-3 to 2x10-1, 

0.67% sucrose: OD 5x10-3 to 2x101, 

0.22% sucrose: OD 5x10-3 to 3x10-1. 

 Table S1 shows a comparison between the previously reported values of the parameters for yeast, 
and the median parameter values that we have obtained by the procedure described above. The 
distribution of parameter values is shown in Fig. S12. Most of the fitted values were consistent with 
literature. The exception is ݃௘௙௙, which is an order of magnitude larger than previously reported. 
However, this parameter depends strongly on the diffusion rate of glucose, such that slower diffusion 
leads to larger ݃௘௙௙. Since the cells in our experiments are not being shaken (both during range 



expansions as well as in the experiments we performed to measure growth rates), most of the hydrolysis 
products remain in the vicinity of the cell, resulting in lower diffusion, and a larger ݃௘௙௙. Other factors 
that affect ݃௘௙௙ such as genetic background, cell size, etc. could also contribute to the observed difference 
with previous measurements. The lack of mixing is also consistent with the slightly lower ݒ௦ that we 
estimate compared to literature, since the efficiency of hydrolysis is reduced. 

These 89 parameter sets fit the observed growth rates well over the entire range of cell densities and 
sucrose concentrations as shown in Fig. S13. 

We then simulated expansions using the mechanistic growth model and the 89 parameter sets 
obtained above. The simulations exactly follow the experiments, and have cycles of migration/dilution 
followed by growth, with eqn. S14-S17 giving the dynamics in the growth phase (Fig. S14, SI section 5, 
SI simulation code). The simulated velocities for each of the 89 parameter sets all show a transition from 
pulled to pushed waves with increasing sucrose concentration, and are distributed closely around 
experimentally observed velocities (Fig. S8). 

The excellent agreement between the model and the experimental observations further supports our 
conclusions that the break-down of the theory of pulled waves at high sucrose concentrations is due to an 
increasing strength of the Allee effect makes yeast expand as a pushed wave. 

5. Simulations 

Stochastic simulations were performed for computing the rate of exponential density decay at the 
front as well as for testing the predictions of the mechanistic growth model. In the simulations, the 
expansions were allowed to proceed for longer times than in the experiment, so as to completely remove 
all transients. Expansions were typically simulated for 60 cycles across a sufficiently long landscape so 
that the waves do not reach its edge. The total carrying capacity in each spatial patch was the same as in 
the experiments. 



The simulations reflect exactly the dynamics in our experiments (Fig. S14). The cells start with an 
exponential spatial density profile. For each cycle, logistic model (in simulations for calculating the 
exponent at the front) or the mechanistic growth model is integrated over a period of 4 hours to obtain the 
final population density in each well. Growth is thus deterministic in the simulations. At the end of the 
growth cycle, the number of cells is rounded off to the nearest integer. Binomial sampling is used to 
determine the number of cells that are transferred for the next cycle, taking into account the migration rate 
as well as the dilution rate. This step therefore accounts for the demographic fluctuations. 

Finally, since growth in the mechanistic model explicitly depends on sugar concentrations, we also 
include the effects of sugar transfer due to migration and dilution in the simulations (Fig. S14). 

Velocities in the simulations are calculated in the same way as experiments (Materials and Methods). 
A threshold density of 2000 cells per well and the location of the wavefront is defined as the position at 
which the profile crosses this threshold. Velocity is then calculated by obtaining a linear fit between the 
position and time. 



Parameter Median Literature References  
Maximal growth rate on glucose, ߛ௠௔௫ [hr-1] 0.390 0.3 – 0.55 (0.39) 39, 49-51 
 ெ for growth on glucose, ݇௚ [% w/v] 0.0019 0.002 – 0.003 (0.002) 63ܭ
  ெ for sucrose hydrolysis, ݇௦ [% w/v] 0.781 0.5 – 1.5 (0.8) 49, 61-62ܭ
Maximal sucrose hydrolysis rate, ݒ௦ [% OD-1 hr-1] 0.833 2.4 (2.4) 49  
Privatization parameter, ݃௘௙௙ [OD hr] 0.02 0.0015 (0.0015) 49 
Yield on glucose, ܻ [% OD-1] 0.057 – (0.07) –  
 
Table S1 
The table shows a comparison between previously reported and median values of model parameters obtained by fitting the model to measured growth rates. Values in brackets under the literature column are used for the simulation in Figure S7. 
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#	Growth	cycle	integration
def	grow(N,	G,	S,	**kwargs):
				'''
				Takes	into	account	the	glucose	and	sucrose	transferred	over
				'''
				pars	=	kwargs['growth_params']
				model	=	kwargs['model']
				Nf,	gf,	sf	=	[],	[],	[]
				for	i	in	range(len(N)):
								n,	g,	s	=	N[i],	G[i],	S[i]
								concs	=	integrator(array([n,	g,	s]),	4,	model,	pars,	res=0.01)[0].T
								Nf.append(concs[0][-1])
								gf.append(concs[1][-1])
								sf.append(concs[2][-1])
				return	array(Nf),	array(gf),	array(sf)

#	Final	routine	for	each	cycle
def	simulate_expansion(**kwargs):
				num_cycles	=	kwargs['cycles']
				num_patches	=	len(kwargs['N_connected'])
				#dsc	=	kwargs['dscz']
				Npop	=	zeros((num_cycles,	num_patches))	#	Preallocate	memory	for	the	simulation
				glu,	suc	=	ones((num_cycles,	num_patches))*kwargs['g'],	ones((num_cycles,	num_patches))*kwargs['s']
				Npop[0]	=	array(kwargs['N_connected'])	#	Initialize	the	first	row

				#	Run	simulation	for	num	cycles
				for	i	in	range(1,	num_cycles):

								#	Migrate
								Npop[i]	=	simulation2.discretize(simulation2.migrate(Npop[i-1],	kwargs['m'],	**kwargs),	1)
								df	=	kwargs['dilution_factor']
								m	=	kwargs['m']
								gSize	=	len(glu[i-1])
								left	=	arange(-1,	gSize	-	1)	%	gSize
								right	=	arange(1,	gSize	+	1)	%	gSize
								glu[i]	=	(1.-1./df)*glu[i]	+	1./df*((1-m)*glu[i-1]+m/2.*(glu[i-1][left]	+	glu[i-1][right]))
								suc[i]	=	(1.-1./df)*suc[i]	+	1./df*((1-m)*suc[i-1]+m/2.*(suc[i-1][left]	+	suc[i-1][right]))
								
								#	Run	Growth	cycle
								Npop[i],	glu[i],	suc[i]	=	grow(Npop[i]/od_scale/volume,	glu[i],	suc[i],	**kwargs)
								Npop[i]	=	simulation2.discretize(Npop[i]*od_scale*volume,	1)
				
				if	'ret_all'	in	kwargs.keys():
								return	Npop,	glu,	suc
				return	Npop

#	Parameters
def	gen_pardict(cycles=60,	size=45,	m=0.5,	df=2,	migrate='s',	dilute='s',	g=0.125,	s=0,
																growth_pars=(0.39,	0.0019,	0.02,	0.057,	0.833,	0.781),	model=jg2):
				par_dict	=	{
								'cycles'	:	cycles,
								'N_connected'	:	r_[zeros(size)],
								'm'	:	m,
								'dilution_factor'	:	df,
								'migrate'	:	migrate,
								'dilute'	:	dilute,
								'g'	:	g,
								's'	:	s,
								'growth_params'	:	growth_pars,
								'model'	:	model
				}
				par_dict['N_connected'][0]	=	0.9
				par_dict['N_connected'][1]	=	0.9
				par_dict['N_connected'][2]	=	0.09
				par_dict['N_connected'][3]	=	0.009
				par_dict['N_connected'][4]	=	0.0009
				par_dict['N_connected'][5]	=	0.00009
				par_dict['N_connected'][6]	=	0.000009
				par_dict['N_connected'][7]	=	0.0000009
				par_dict['N_connected'][8]	=	0.00000009
				par_dict['N_connected'][9]	=	0.000000009
				par_dict['N_connected']	=	array(par_dict['N_connected']*od_scale*volume,	int)



				
				return	par_dict

def	integrator(v_i,	t,	model,	params,	res=0.001):
				n	=	int(t/res)
				arr	=	zeros((n,	len(v_i)))
				tarr	=	zeros(n)
				arr[0]	=	v_i
				for	i	in	range(1,	n):
								arr[i]	=	arr[i-1]	+	model(arr[i-1],	n*res,	0,	*params)*res
								arr[i][where(arr[i]	<	0)]	=	0
								tarr[i]	=	i*res
				return	arr,	tarr

#	Growth	model
def	jg2(v,	t,	verb,	gamma,	kappa,	geff,	alpha,	beta,	ks):
				'''
				1.	Monod	growth	on	glucose,	with	some	background	concentration	of
							glucose	(preferential	access	to	hydrolyzed	sucrose/diffusion,
							now	proportional	to	rate	of	sucrose	hydrolysis)
				2.	Glucose	is	absorbed	at	a	rate	proportional	to	the	division	rate
				3.	Michaelis-Menten	sucrose	hydrolysis
				'''
				n,	g,	s	=	v
				ds	=	-n*beta*s/(s+ks)
				gloc	=	geff*beta*s/(s+ks)
				dn	=	n*gamma*(g+gloc)/(g+gloc+kappa)
				dg	=	n*beta*s/(s+ks)	-	alpha*dn
				
				if	verb:
								print	'dn/dt:	%.3f	OD/hr,	dg/dt:	%.3f%%/hr,	ds/dt:	%.3f%%/hr,	g_loc:	%.4f%%'%(dn,	dg,	ds,	gloc)
				
				return	array([dn,	dg,	ds])

#	Calculating	velocities	using	a	threshold
def	gen_velocities(gpars,	opops={},	model=jg2,	thresh=2000,	log_only=0):
				vvels,	vlvels,	vlog_par,	pops	=	{},	{},	{},	{}
				for	media	in	range(1,	10):
								if	not	log_only:
												if	media	not	in	opops.keys():
																pars	=	gen_pardict(g=g[media],	s=s[media],	growth_pars=gpars,	df=10./3.,	m=0.5,

model=model)
																pops[media]	=	analyzer(simulate_expansion(**pars).T,	m=0.5,	df=10./3.)
												else:
																pops[media]	=	opops[media]
												vvels.update({media	:	pops[media].velocity_threshold(thresh,	pops[media].times[-20:])[0]})
								else:
												pops[media]	=	analyzer([[],[]],	m=0.5,	df=10./3.)
												vvels.update({media	:	0})
								vlog_par.update({media	:	log(comp_fold_growth([1e-7],	g[media],	s[media],	gpars)[0][0]/1e-7)/4.})
								vlvels.update({media	:	pops[media].param_logistic(g=vlog_par[media])[0]})
				return	vvels,	vlvels,	vlog_par,	pops
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