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Supplementary Information Appendix

1. Reaction-diffusion models for one-dimensional range expansions

Populations expanding via short-range migration in one spatial dimension are often modeled by a
reaction-diffusion equation, which is continuous in space and time:

=D+ nr(m). S1

Here n(x,t) is the density of population at position x at time ¢; D is the dispersal coefficient, which is
assumed to be constant in the simple model, and r(n) is the density-dependent per capita growth rate of
the population. Many properties of this model can be obtained analytically by linearizing the growth term,
nr(n) = nr(0) at low densities (Fig. S1); we will also denote r(0) as 1. When colonization dynamics
are determined by the dynamics at the expansion edge, this approximation is quite accurate because
population densities are low at the expansion front. Kolmogorov et. al. proved that, when r(n) is a
monotonically decreasing function, this linearization is guaranteed to capture the expansion dynamics
(55). Expansions described by the linearized growth term are called pulled because they advance via
growth at the low-density front, which effectively pulls the waves forward. Importantly, the condition
derived by Kolmogorov et. al. is sufficient but not necessary. In particular, the linear approximation

continues to hold even when a small Allee effect is present. For larger Allee effects, dispersal from the

faster growing high density region of the front dominates the growth at the low-density expansion edge,



effectively pushing the wave forward. These 'pushed’ waves advance at a higher velocity than one would
predict using just r(0) (17).

Although the model (eqn. S1) can be analyzed in numerous ways (17, 18, 24), a solution using
Fourier transforms is most useful for extending the results to the case of discrete space and time systems,
such as in our experiments. Here, we briefly outline the solution to the continuous model using Fourier
modes as described by van Saarloos (17). We then apply a similar analysis to a model appropriate for our
experimental system, which was used to predict the linearized-growth-velocities in the main text.

The spatial Fourier modes of the front can be written as:

fi(q,t) = [ dxn(x,t)e"ie* S2

where q is the wave number of the Fourier modes. To obtain the spreading speed of a front, we start with
an Ansatz assuming the Fourier modes are of the form 7i(q, t) = 7i(q)e ~““(®t, Substituting back in eqn.
S1 gives the dispersal relationship (w(q) = i(ry — Dq?)). Assuming that the front moves with some
constant asymptotic velocity, v*, we perform inverse Fourier transforms in the coordinate frame moving
with the front ({ = x — v™t):

n(( t) = if_‘*’oo dq el@-ilw(@-v'qlt S3
In the large time limit, only those modes near the saddle point of [w(q) — v*q] survive (60), which

results in the following condition:

x _ dw

= aal,. S4
where g* is the saddle point. Further, in the co-moving reference frame, the wave profile neither grows
nor decays in time, so the imaginary part of the exponent must vanish:
Im(a)(q*)) —Im(@g*)v* =0 S5
This gives the set of relationships that can be used to calculate the asymptotic velocity:

q*



The above two relationships uniquely determine the asymptotic speed v and g*. The exponential decay

rate of the population density at the front then follows eqn. S3 since A = Im (q*). The results are

vt=2 rOD,A=\/r%°. S7

2. Expansions in discrete space and time models
The discretized form (corresponding to the experimental protocol) of the F-KPP equation can be

written as:

m
Ny t+at = 9t (nx,t + > (nx+Ax,t + NyAxt — an,t))a S8

where x is the spatial coordinate, t is the cycle number, and ga;(n) describes total growth rate, i.e.
gae(n) is the product of the per capita growth rate and the population density. Upon linearization ga.(n)
can be written as:

eToAf

gar(n) =n S9

dilution’

which corresponds to exponential growth at rate r, followed by a dilution. Substituting the Fourier mode

fly = e'9*~t  in the above linearized equation gives the dispersion relation:
e lwAL — ero™ [1 4+ m(cosh(—igx) — 1)] S10
dilution

Following the analysis of the continuous case, we use the saddle point approximation and require that the
front is not changing in the co-moving reference frame. The resulting equations are similar to eqn. S6 and
can be recast in a simpler form with the definitions of two real parameters A = Im(q) and s = Im(w)

and an observation that these equations correspond to the requirement that
. {S}
v =min =t
A>0 A
compare to eqn. 3 in the main text.

For small At, one can analytically obtain corrections to the continuous results in eqn. S7 due to the

discreteness of space. However, since in our experiments, At ~ 4 hrs, which is longer than the time scale



set by the growth rate (~2 hrs), the velocity and spatial decay rate have to be evaluated by minimizing
eqn. S10 numerically.

The magnitude of deviations between the continuous and discrete models are shown in Fig. S3. Note
that the discrete dynamical equation describing the experiment is not the same as the discretized version

of the F-KPP equation, which can be written as:
— At At
Ny t+At = nx,tero'eff + Deff Ax2 (nx+Ax,t + Ny_pxt — an,t) SI1

Comparing eqns. S9 and S11, the effective growth and diffusion rates in the continuous model should be

expressed in terms of experimental parameters as follows:

In(dilution)

Toeff =To — AL
m Ax?
Deff =?A_t(1 +reffAt) S12

(At = 4 hr, Ax = 1 well). The effective parameters can then be used in continuous models to compare
them to the discrete space-time experimental model and evaluate the magnitude of 'corrections' that are
introduced due to the discretization.

The finite number of organisms per spatial patch also changes the velocity and spatial decay rate.
Although stochastic effects obviously cause fluctuations in the velocity, the expectation value of the

velocity is also reduced as compared to predictions that do not incorporate demographic stochasticity. The
deviations have been shown to be of the order of @ N’ where N is the number of individuals per unit

length, when space and time are continuous (54). Moreover, the fronts have been shown to be steeper
when demographic stochasticity is added (53, 54). We see this in our experiments, where, without
accounting for the demographic stochasticity, the observed spatial decay rate is larger than predicted. This
discrepancy vanished when we incorporated the effects of stochasticity in our predictions (Fig. S4).

3. Cubic model of the Allee effect

A generic model of the Allee effect was used for making the cartoon in Fig. 4 in the main text. In this

model, the density dependence of growth is given by:



1dn _ 1y
n dt a

(1-3)(+a) S13
This model shows no Allee effect for a > k (per capita growth rate monotonically decreases with
increasing density), and a weak Allee effect for a < k. Further, as a is varied, the growth rate at low

density remains constant and is given by r,. The transition from pulled to pushed waves occurs at

a = k/2 inside the weak Allee effect regime (64).

4. A mechanistic growth model captures the Allee effect and shows a transition from pulled to

pushed waves with increasing sucrose

We developed a mechanistic model for yeast growth in our experiments. The model incorporates
previously well-studied mechanisms such as Monod growth on glucose (61) and a Michaelis-Menten
kinetics of sucrose hydrolysis (49, 52, 63). Using previously measured values of the model parameters
(Table S1), we found that the magnitude of the Allee effect increases with the amount of sucrose in the
medium. Importantly, the model also displayed a transition from pulled to pushed waves, consistent with
the experimental observations in Fig. 5 (Fig. S7). This transition was observed for a wide range of model
parameters and is a generic prediction of the model. To test for quantitative agreement between the model
and the experiments, we fitted the parameters of the model to our independent measurements of the
growth rates, and confirmed that the predicted velocities closely match experimental observations (Fig.
S8).

The model describes growth of yeast in the presence of glucose and sucrose, and assumes that there
are no other limiting resources. Furthermore, while glucose is metabolized directly by the yeast, sucrose
needs to be hydrolyzed to monosaccharides before it can be utilized. Although sucrose is hydrolyzed to
glucose and fructose, we treat these sugars equivalently and refer to the combined concentration of the
monosaccharides as the glucose concentration (49). This hydrolysis reaction is catalyzed by an enzyme
invertase produced by yeast cells. Most of the invertase stays attached to the cell surface resulting in

higher rates of hydrolysis in the immediate vicinity of the cell and creating a local cloud of glucose in



excess of the bulk glucose concentration. Thus, yeast cell benefit from both the glucose produced by
themselves and from the glucose produced by their neighbors (49). These dynamics are captured by the
following Monod growth law and glucose consumption equation:

ldn Jloc S
2an _ 14
n dt Jloctkyg Vmax

dg__ d_n
T Ydt+nV S15

Here, the first equation describes cell division, where n is the cell density, g;,. is the local glucose
concentration around each cell, kg is the Michaelis-Menten constant for glucose utilization and Yy, 4y is
the maximum division rate. The second equation gives the corresponding rate of utilization of glucose
(g), which is proportional to the division rate of the cells (the proportionality constant, Y, determines the
carrying capacity of the population). The additional term, nV, corresponds to the production of glucose

due to sucrose hydrolysis. The per capita rate of sucrose hydrolysis, V, is given by

N 1ds

—_1as S16

s+ks  ndt

V=,

where s is the sucrose concentration, v is the maximum rate of sucrose hydrolysis, and k; is the
Michaelis-Menten constant. Finally, the local glucose concentration around the cell is the sum of the bulk
glucose concentration, and the additional cloud of glucose due to the sucrose hydrolysis on the cell
surface. The contribution of this cloud is proportional to the rate of sucrose hydrolysis, and thus
Gioc =9 + GesrV, S17

where g.ry is the proportionality constant that accounts for the glucose escape through diffusion (49).

To infer model parameters, we measured growth rates in varying sucrose concentrations, and different
cell densities. The growth rate measurements and the corresponding range expansions were carried out in

9 different media: 0.125% glucose, and 0.008% glu + varying amounts of sucrose.

Before we describe the specifics of how the model parameters were determined from the
experimental data, it is important to discuss how each parameter contributes to the different aspects of the

experimental data and demonstrate that the data contains sufficient information to constrain the model



parameters. The yield parameter, Y, determines the number of cells that can be produced given a certain
amount of glucose. For the growth rate measurements in pure glucose, Y therefore controls the population
densities at which the growth rate precipitously drops to zero. We determined Y by fitting the model
prediction to our growth measurement at high cell densities in 0.125% glucose (Fig. S9). The growth rate
at low cell densities in pure glucose media is completely determined by ypmqx and kg, and our data
contained sufficient information to infer these parameters because we had low-density growth rate
measurements in pure glucose as well as in several sucrose concentrations that produced varying local
concentrations of glucose as specified by eqn. S17. The low-density growth rates at different sucrose

concentrations also depend on kg and vsg,sr; therefore, we could use our low-density measurements to

infer four model parameters Yy, qx, kg, ks and vsgery.

The dynamics at high population densities depend not only on the product of vg and gy, but on the
individual values of these parameters. In particular, higher values of v; and lower values of g, (keeping
their product fixed) result in a larger Allee effect and more cooperative growth because of the faster
sucrose hydrolysis and greater sharing of glucose via diffusion away from the cell. Therefore the
magnitude of the Allee effect at high sucrose concentration provided the last necessary constraint to

determine all of the model parameters.

Instead of directly fitting to the entire data set simultaneously, we used a modular approach of fitting
the growth dynamics at low-density and high-density separately. We also bootstrapped on our data to

determine the uncertainty in model parameters and model predictions.

To obtain a set of low density growth parameters, we bootstrapped over the measured values of
growth rates in each of the media, and fitted the parameters by minimizing the squared distance from the
bootstrapped data using Python package scipy (curve fit). All data at starting densities below OD 0.004
was included, as indicated in Fig. S10. However, all outliers more than 2.5 SD away from the mean, were

excluded from the analysis. Moreover, growth was unusually slow in one of the measurements, in 0.003%



sucrose. This is the regime where the low-density growth rate is independent of sucrose concentration,
since the concentration of sucrose is lower than that of glucose, which was 0.008%. Therefore, we
excluded this particular condition while fitting the parameters. The bootstrapping procedure was repeated
to obtain 100 sets of low-density growth parameters, Vmqx, kg, ks and vsgess. Out of these, a few
iterations of the curve_fit routine did not converge on the fit, leaving 89 sets of parameters for
downstream analysis. Fig. S11 shows the low-density growth rates that the model predicts for each of the

parameter sets.

Next, for each of the 89 sets obtained above, we determined the individual parameters, vg and gefy,
keeping the product constant. As noted earlier, the relative magnitudes of these two parameters control
the magnitude of the Allee effect. Therefore, parameters v; and g, were determined by minimizing the
squared distance from growth rates at intermediate densities in 2%, 0.67% and 0.22% sucrose — the media
that exhibit a substantial Allee effect. The sum of squared distance from all the data points in the selected
regions of the cell densities was calculated for values of v, ranging from 0.2 to 4 % OD'hr’', and the
value of v; minimizing the sum was chosen. These regions of cell densities were selected such that the

growth rates increase with density (i.e. exhibit an Allee effect) and are summarized below:
2% sucrose: OD 5x107 to 2x107",
0.67% sucrose: OD 5x107 to 2x10",
0.22% sucrose: OD 5x107 to 3x10™.

Table S1 shows a comparison between the previously reported values of the parameters for yeast,
and the median parameter values that we have obtained by the procedure described above. The
distribution of parameter values is shown in Fig. S12. Most of the fitted values were consistent with
literature. The exception is g.rr, which is an order of magnitude larger than previously reported.
However, this parameter depends strongly on the diffusion rate of glucose, such that slower diffusion

leads to larger g,r. Since the cells in our experiments are not being shaken (both during range



expansions as well as in the experiments we performed to measure growth rates), most of the hydrolysis
products remain in the vicinity of the cell, resulting in lower diffusion, and a larger gss. Other factors
that affect g such as genetic background, cell size, etc. could also contribute to the observed difference
with previous measurements. The lack of mixing is also consistent with the slightly lower v that we

estimate compared to literature, since the efficiency of hydrolysis is reduced.

These 89 parameter sets fit the observed growth rates well over the entire range of cell densities and

sucrose concentrations as shown in Fig. S13.

We then simulated expansions using the mechanistic growth model and the 89 parameter sets
obtained above. The simulations exactly follow the experiments, and have cycles of migration/dilution
followed by growth, with eqn. S14-S17 giving the dynamics in the growth phase (Fig. S14, SI section 5,
SI simulation code). The simulated velocities for each of the 89 parameter sets all show a transition from
pulled to pushed waves with increasing sucrose concentration, and are distributed closely around

experimentally observed velocities (Fig. S8).

The excellent agreement between the model and the experimental observations further supports our
conclusions that the break-down of the theory of pulled waves at high sucrose concentrations is due to an

increasing strength of the Allee effect makes yeast expand as a pushed wave.
5. Simulations

Stochastic simulations were performed for computing the rate of exponential density decay at the
front as well as for testing the predictions of the mechanistic growth model. In the simulations, the
expansions were allowed to proceed for longer times than in the experiment, so as to completely remove
all transients. Expansions were typically simulated for 60 cycles across a sufficiently long landscape so
that the waves do not reach its edge. The total carrying capacity in each spatial patch was the same as in

the experiments.



The simulations reflect exactly the dynamics in our experiments (Fig. S14). The cells start with an
exponential spatial density profile. For each cycle, logistic model (in simulations for calculating the
exponent at the front) or the mechanistic growth model is integrated over a period of 4 hours to obtain the
final population density in each well. Growth is thus deterministic in the simulations. At the end of the
growth cycle, the number of cells is rounded off to the nearest integer. Binomial sampling is used to
determine the number of cells that are transferred for the next cycle, taking into account the migration rate

as well as the dilution rate. This step therefore accounts for the demographic fluctuations.

Finally, since growth in the mechanistic model explicitly depends on sugar concentrations, we also

include the effects of sugar transfer due to migration and dilution in the simulations (Fig. S14).

Velocities in the simulations are calculated in the same way as experiments (Materials and Methods).
A threshold density of 2000 cells per well and the location of the wavefront is defined as the position at
which the profile crosses this threshold. Velocity is then calculated by obtaining a linear fit between the

position and time.



Parameter Median Literature References

Maximal growth rate on glucose, ¥;nqx [hr] 0.390 0.3-0.55 39, 49-51
(0.39)

K, for growth on glucose, kg [% w/v] 0.0019 0.002 —0.003 63
(0.002)

Ky, for sucrose hydrolysis, kg [% w/v] 0.781 0.5-1.5(0.8) 49, 61-62

Maximal sucrose hydrolysis rate, vs [% OD hr']  0.833 2.4 (2.4) 49

Privatization parameter, g.rr [OD hr] 0.02 0.0015 49
(0.0015)

Yield on glucose, Y [% OD™] 0.057 -(0.07) -

Table S1

The table shows a comparison between previously reported and median values of model parameters
obtained by fitting the model to measured growth rates. Values in brackets under the literature column
are used for the simulation in Figure S7.
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Figure S1

Rgaction—diffusion equations are classical models for expansion in theoretical ecology. When populations
grow logistically, Fisher’'s equation predicts traveling waves of constant velocity, with an exponential
spatial profile near the front. Both of these emergent properties depend only on the low-density growth
rate, and are independent of the carrying capacity.

(a) Populations that obey logistic growth increase exponentially with rate rg at low density, and the per
capita growth rate decreases monotonically until the population density saturates at some carrying
capacity, K. Three growth curves with identical low-growth rate, but different carrying capacities are
shown. (b) Emergent properties of the expansion front, such as velocity (v) and spatial decay rate of
density at the front (\), depend only on the per capita growth rate at low density (rg) and the diffusion
constant (D), and are independent of the carrying capacity (vg=vi=v3, A\g=A1=X>=)). The bulk density,
however, does depend on the carrying capacity (K).
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Figure S2

The maximal per capita growth rate in galactose (a) and glucose (b) never significantly exceeds the per
capita growth rate at low density

We measured the fold growth by counting the number of yeast cells before and after 4 hours of growth in
a 96-well plate. Each well started with a small humber of yeast cells. After propagating the cultures with
dilution for two 4-hour cycles (to remove transient effects caused by a change of growth environment),
the number of cells in the wells were counted by flow cytometry at the beginning and end of the third and
fourth cycle. Cells were counted after a 100x dilution. Due to the small numbers, the actual counts at low
density had a large sampling noise. The figure shows the growth rate as an average over a Gaussian
moving window. Shaded region indicates standard deviation in the average over the window in
bootstrapped data. Since density does not change appreciably over the course of four hours, we
estimated the growth rate assuming that it remains constant over the course of the experiment and
results in an exponential increase in cell density.



12 0.125% glucose 09 0.5% galactose 06 m=0.5, df =3.3
fa - T T T T fa a T T T fa d T T T T T T T
S S S
go9 = 06} = 04f
206 2 g
0.3} 02}
ko) ko] S
goomommﬁommvmmo gOOLA"lLr'\ <O 1nmMm <M <N goo Q Q Q Q Q Q Q Q
XN XX XXX
O O S 1N 0 M oo
139393 TL L 1 12 12 10 11 12 it
Experimental condition Experimental condition Sucrose concentration (40.008% glu)
Figure S3

Effect of discretizing space and time (and addition of demographic stochasticity) on predicted velocities in
glucose (a), galactose (b) and sucrose (c) environments. Each set of bars represents an experimental
condition (different migration and death rates). In (c), the 8 conditions have constant migration and death
rate, but decreasing amount of sucrose. Red bars indicate predicted linearized-growth-velocities in
continuous space-time models with the same effective growth and diffusion rate as the discrete
experimental system (eqn. S12). Here, we show a decomposition of the effects due to discrete space-time,
and demographic stochasticity. Discreteness of space and time (green): Since migration is limited to one
well at a time in the linear stepping stone model, emergent wave velocities can never exceed 1 well/cycle.
The corrections are large and are calculated numerically from eqn. S10.

Demographic stochasticity (blue): Demographic stochasticity has been predicted to reduce expansion
velocity. The correction to the continuous space-time model due to demographic stochasticity is of the
order of 1/log?(N). In our experiments, we calculated the corrections using simulations with measured
growth rates and other known experimental parameters.

Experimental data (gray): We see that the observed velocities are in close agreement with predictions once
the effects of discretization and stochasticity are incorporated (subplots a, b). Panel (c) shows that the
observed and predicted velocities match for low but not high sucrose concentrations (even after
incorporating the effects described above). The deviations are due to the large Allee effect at high sucrose
concentrations, making the waves pushed. Error bars indicate S.D. in measured velocity at five different
threshold densities.
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Figure S4

Demographic stochasticity significantly affects the spatial decay rate at the front (SI Section 2)

(a) Predicted spatial rate of decay at the front, based on linearized growth, is less than what is
experimentally observed when demographic stochasticity is not taken into account. (b) When finite
population effects (demographic stochasticity) are included, the observed front shape is close to predictions.
The predicted spatial decay rate is based on simulations using measured values of low-density growth rate
and known experimental parameters such as migration and death rate (S| section 5). y-axis error bars
indicate S.D. in measured decay rate for three different fitting regions at the front.
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Low-density growth rate increases slowly with increasing sucrose concentration

Since some of the hydrolyzed sucrose is captured by the yeast cells before it can diffuse away,
increasing the sucrose concentration leads to increased growth rates even at low densities, when
cooperative effects are absent (Sl section 4). However, the maximal growth rate increases faster
than the low-density growth rate, resulting in an increasingly severe Allee effect (Fig. S6). Error bars

indicate S.E.M. in measured low-density growth rates (Fig. S10).
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Figure S6
Magnitude of Allee effect increases with increasing sucrose concentration
The magnitude of the Allee effect is estimated as the difference between the maximal growth rate,

rmaer @nNd the low-density growth rate, ro. Error bars indicate S.E.M. of the low-density growth rate
(Arg). 7., Was determined as the maximal value of the growth rate after averaging over a moving
Gaussian window, as shown in Fig. S2 for 0.125% glucose and 0.5% galactose.
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A mechanistic model of yeast growth on sucrose and glucose predicts a transition from pulled to pushed
waves (Sl section 4)

A simple mechanistic model where yeast grows on glucose following Monod kinetics, and hydrolyzes
sucrose to glucose (details in SI) was used to simulate expansions. All the parameters in the model have
been reported previously in various studies. Using typical parameter values from published literature
(table S1), the model predicts a transition from pulled to pushed waves as the sucrose concentration in
the media is increased. At low sucrose concentrations, expansions are pulled, reflected in the agreement
between simulated velocities and the linearized-growth predictions. At larger sucrose concentrations,
expansion velocities exceed the linearized-growth prediction, indicating that the expansions are pushed.
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Figure S8

A mechanistic model for growth on glucose and sucrose predicts velocities close to what are observed
experimentally (Sl section 4)

Experimentally observed velocities in 8 different sucrose concentrations and in 0.125% glucose are
shown as red points with SD errorbars. Gray points show the predicted linearized-growth velocities. Error
bars are obtained by bootstrapping on the measured growth rates at low densities and calculating the
linearized growth velocities. Shaded regions indicate predictions of the model. The observed velocities
match well with the predictions of the model. The model also captures the transition from pulled to
pushed waves as the deviation between observed and linearized-growth velocities (gray shading) around
sucrose concentration of 0.025%. The width of the shaded regions is the standard deviation of simulation
results for 89 parameter sets obtained by bootstrapping over the growth rate measurements and fitting
the model to the bootstrapped data.
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The yield parameter in the mechanistic model, Y, was obtained by fitting the model to growth rate
measurements in 0.125% glucose, at high densities where there is a sharp decrease in growth rate with
density. The yield parameter reflects the amount of glucose that a cell utilizes per division. At high cell
densities, glucose is depleted quickly, causing the per capita growth rate to decrease sharply as starting
OD is increased. By fitting the model to this region of growth, the value of Y can be determined accurately:
Y = 0.057 ODL. Data is shown as green points, only at high densities, where growth rate is strongly
affected by the yield parameter due to resource limitation.
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Figure S10

Low-density growth rates were measured by averaging the growth rate measurements over densities up
to OD 0.004 (corresponding to 1000 cells per well). Population density is plotted along the x-axis, in terms
of OD600, and growth rate is plotted along the y-axis for each panel. Data in the unshaded region is
included as growth rate at low density. This region includes all data at ODs below 0.004 except for the
outliers that are more than 2.5 SD away from the mean. Inset text indicates mean and S.E.M. of the
unshaded data in hr?
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Figure S11
Low-density growth rates predicted across different sucrose concentrations by the model. We used 89

low-density parameter sets (v,,.., k, ki, v,g.4y) Obtained by fitting to bootstrapped low-density growth rate
measurements. Black circles with error bars represent the mean growth rate and s.e.m. Gray lines are
model predictions. The details of the bootstrapping procedure can be found under section 4 in SI.
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Figure S12

Distribution of parameter values in the 89 independent parameter sets obtained by bootstrapping over
the data. Median values of the parameters are indicated in the title. Most median parameter values are in
close agreement with previously reported values in the literature (Table S1). The exception is g.;, Which is

expected to differ because the media is not shaken in our experiments (S| section 4).
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Allee effect increases with sucrose concentration. Measured growth rates at various cell densities are shown
as blue points. Blue curves are the predictions of the model for each of the 89 parameter sets. For all
parameter sets, the model matches the data well and shows an increasing Allee effect as sucrose
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# Growth cycle integration
def grow(N, G, S, **kwargs):

Takes into account the glucose and sucrose transferred over
pars = kwargs['growth params']
model = kwargs['model"']
Nf, of, sf =[], [1, []
for i in range(len(N)):
n, g, s = N[i], G[i], S[il]
concs = integrator(array([n, g, sl), 4, model, pars, res=0.01)[0].T
Nf.append(concs[O][=-11)
gf.append(concs[1][-11)
sf.append(concs[2][-11)
return array(Nf), array(gf), array(sf)

# Final routine for each cycle
def simulate expansion(**kwargs):
num _cycles = kwargs|['cycles']
num_patches = len(kwargs['N _connected'])
#dsc = kwargs|['dscz']
Npop = zeros((num_cycles, num patches)) # Preallocate memory for the simulation
glu, suc = ones((num_cycles, num patches))*kwargs['g'], ones((num_cycles, num patches))*kwargs['s']
Npop[0] = array(kwargs['N connected']) # Initialize the first row

# Run simulation for num cycles
for i in range(1l, num cycles):

# Migrate

Npop[i] = simulation2.discretize(simulation2.migrate(Npop[i-1], kwargs['m'], **kwargs), 1)
df = kwargs['dilution factor']

m = kwargs['m']

gSize = len(glu[i-11)

left = arange(-1, gSize - 1) % gSize
right = arange(1l, gSize + 1) % gSize
glu[i] = (1.-1./df)*qlu[i] + 1./df*((1-m)*glu[i-1]+m/2.*(glu[i-1][left] + glu[i-1][right]))
suc[i] = (1.-1./df)*suc[i] + 1./df*((1-m)*suc[i-1]+m/2.*(suc[i-1][left] + suc[i-1][right]))

# Run Growth cycle
Npop[il, glu[i], suc[i] = grow(Npop[i]/od scale/volume, glu[i], suc[i], **kwargs)
Npop[i] = simulation2.discretize(Npop[i]*od scale*volume, 1)

if 'ret all' in kwargs.keys():
return Npop, glu, suc
return Npop

# Parameters
def gen pardict(cycles=60, size=45, m=0.5, df=2, migrate='s', dilute='s', g=0.125, s=0,
growth pars=(0.39, 0.0019, 0.02, 0.057, 0.833, 0.781), model=jg2):

par _dict = {
'cycles' : cycles,
'N_connected' : r_[zeros(size)],
'm' @ m,
'dilution_ factor' : df,
'migrate' : migrate,
'dilute' : dilute,
‘9" 9,
's' 1 s,
‘growth _params' : growth pars,
'model' : model
}
par _dict['N connected'][0] = 0.9
par dict['N connected'][1] = 0.9
par dict['N connected'][2] = 0.09
par dict['N connected'][3] = 0.009
par dict['N connected'][4] = 0.0009
par_dict['N connected'][5] = 0.00009
par_dict['N _connected'][6] = 0.000009
par _dict['N _connected'][7] = 0.0000009
par dict['N connected'][8] = 0.00000009

par dict['N connected'][9] 0.000000009
par dict['N connected'] = array(par _dict['N connected']*od scale*volume, int)



return par_dict

def integrator(v_i, t, model, params, res=0.001):

n = int(t/res)

arr = zeros((n, len(v_1i)))

tarr = zeros(n)

arr[0] = v i

for i in range(1, n):
arr[i] = arr[i-1] + model(arr[i-1], n*res, 0, *params)*res
arr[i][where(arr[i] < 0)] =0
tarr[i] = i*res

return arr, tarr

# Growth model
def jg2(v, t, verb, gamma, kappa, geff, alpha, beta, ks):

1. Monod growth on glucose, with some background concentration of
glucose (preferential access to hydrolyzed sucrose/diffusion,
now proportional to rate of sucrose hydrolysis)

2. Glucose is absorbed at a rate proportional to the division rate

3. Michaelis-Menten sucrose hydrolysis

n, g, s =yv
ds = -n*beta*s/(s+ks)
gloc = geff*beta*s/(s+ks)

dn = n*gamma*(g+gloc)/(g+gloc+kappa)
dg = n*beta*s/(s+ks) - alpha*dn
if verb:

print 'dn/dt: %.3f OD/hr, dg/dt: %.3f%%/hr, ds/dt: %.3f%%/hr, g loc: %.4f%%'%(dn, dg, ds, gloc)
return array([dn, dg, ds])

# Calculating velocities using a threshold
def gen velocities(gpars, opops={}, model=jg2, thresh=2000, log only=0):
vvels, vlvels, vlog par, pops = {}, {}, {}, {}
for media in range(1, 10):
if not log only:
if media not in opops.keys():
pars = gen pardict(g=g[medial, s=s[medial], growth pars=gpars, df=10./3., m=0.5,
model=model)
pops[media] = analyzer(simulate expansion(**pars).T, m=0.5, df=10./3.)
else:
pops[media] = opops[medial
vvels.update({media : pops[media].velocity threshold(thresh, pops[media].times[-20:]1)[0]})
else:
pops[media] = analyzer([[],[]1], m=0.5, df=10./3.)
vvels.update({media : 0})
vlog par.update({media : log(comp fold growth([le-7], g[medial, s[medial, gpars)[0][0]/1le-7)/4.})
vlvels.update({media : pops[media].param logistic(g=vlog par[medial)[0]1})
return vvels, vlvels, vlog par, pops
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