Supporting information

Human induced pluripotent stem cell-derived versus adult cardiomyocytes: an *in silico* electrophysiological study on ionic current block effects

Michelangelo Paci, Jari Hyttinen, Blanca Rodriguez, Stefano Severi

Changes to the Paci2013 model

In this paper we used a slightly modified version of the Paci2013 model presented in (Paci et al., 2013).

Inclusion of I_f contribution (I_{fNa}) to the intracellular Na⁺ mass balance equation:

$$\frac{dNa_i}{dtime} = -C_m \cdot \frac{I_{Na} + I_{bNa} + 3I_{NaK} + 3I_{NaCa} + I_{fNa}}{F \cdot V_c}$$
$$I_{fNa} = 0.42 \cdot g_f \cdot Xf \cdot (V - E_{Na})$$

Tuning of maximum conductances/currents/fluxes, to balance the intracellular concentrations of Na^+ and Ca^{2+} and the Ca^{2+} concentration in the sarcoplasmic reticulum.

		Ventricular-like	Atrial-like
K _{NaCa}	(A/F)	5978	2989
P _{NaK}	(A/F)	2.2958	1.7678
g _{bNa}	(S/F)	0.95	0.95
g _{bCa}	(S/F)	0.727272	0.727272
Vmax _{up}	(mM/s)		0.198
C _{rel}	(mM/s)	0	0

Stimulation protocol and simulation of ionic current block

Two different stimulation protocols were used for the VL and AL hiPSC-CM models, due to the different spontaneous beating rate: (i) VL hiPSC-CM was stimulated at 60 bpm with depolarizing current pulses of 5 ms duration and 10 pA/pF amplitude, (ii) AL hiPSC-CM was stimulated at 80 bpm with pulses of 5 ms duration and 9 pA/pF amplitude. The hAdultV-CM was stimulated as in (O'Hara et al., 2011) at 60 bpm with stimulus of 0.5 ms duration and 80 pA/pF amplitude.

For three currents biomarkers were not computed at steady state but in different conditions, in detail:

- 7 s after block for all I_{kr} blocks;
- 10 beats after block for I_{NaCa} full block;
- immediately after administration of the blocker for I_{K1} full block.

Supplementary tables

Table S1a – AP biomarkers changes induced by the different blockade levels in the stimulated ventricularlike model. ^a: biomarkers computed 7s after I_{Kr} blocker administration. ^b: biomarkers computed after 10 beats after I_{NaCa} full block of, due to non-representative ionic concentration at the steady state.

		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90	APD _{ratio}		
		(mV)	(V/s)	(mV)	(mV)	(ms)	(ms)	(ms)	(ms)			
	Control	-76.2	47.4	115	38.5	258	367	418	469	3.41		
	0.1×IC ₅₀	-76.2	44.5	113	36.9	267	371	420	470	3.37		
	IC ₅₀	-76.5	29.0	108	31.7	292	380	421	475	2.82		
Na	2×IC ₅₀	-76.7	22.2	106	29.8	296	379	418	473	2.72		
	FULL	-76.9	10.2	103	26.3	292	375	416	475	2.40		
	0.1×IC ₅₀	-76.2	48.8	115	39.1	225	332	382	431	3.46		
	IC ₅₀	-76.4	51.6	117	40.4	73	152	191	227	3.18		
CaL	2×IC ₅₀	-76.1	49.8	115	39.1	47	100	132	162	2.20		
	FULL	-75.1	45.7	110	34.9	24	47	71	96	1.05		
	0.1×IC ₅₀ ^a	-76.1	46.8	114	38.1	272	387	441	493	3.53		
1	IC ₅₀ ^a	-76.1	38.0	110	34.1	371	524	584	648	3.86		
I Kr	$2 \times IC_{50}^{a}$	-75.9	30.8	108	32.1	420	602	664	732	4.71		
	FULL ^a	-71.9	14.1	95	23.6	560	825	884	938	8.26		
	0.1×IC ₅₀	-76.2	47.3	115	38.5	259	368	419	470	3.41		
I	IC ₅₀	-76.1	46.9	115	38.4	264	373	425	475	3.48		
IKS	2×IC ₅₀	-76.1	46.9	114	38.3	266	375	427	477	3.54		
	FULL	-76.1	46.7	114	38.2	270	380	432	482	3.60		
	0.1×IC ₅₀	-75.3	42.1	112	36.5	278	382	435	488	3.05		
1	IC ₅₀	-69.5	22.4	104	34.9	325	435	520	599	1.72		
IK1	2×IC ₅₀	-64.3	16.8	98	34.1	336	449	561	701	0.91		
	FULL	REPOLARIZATION FAILURE										
	0.1×IC ₅₀	-76.3	48.6	115	39.0	258	368	420	471	3.52		
L	IC ₅₀	-76.9	54.4	118	41.2	261	376	429	484	3.59		
It	2×IC ₅₀	-77.2	57.4	119	42.1	261	379	432	490	3.60		
	FULL	-78.1	64.0	122	44.1	262	386	440	503	3.71		
	0.1×IC ₅₀	-76.0	47.2	115	38.7	260	364	413	460	3.57		
	IC ₅₀	-75.3	46.3	115	39.4	280	364	402	435	3.73		
INaCa	2×IC ₅₀	-75.7	47.1	117	40.8	286	369	405	433	4.22		
	FULL ^b	-84.9	75.2	136	51.4	223	312	342	363	5.77		
	0.1×IC ₅₀	-76.1	47.3	115	38.6	259	368	419	470	3.46		
I.	IC ₅₀	-76.1	46.7	115	39.1	263	374	425	476	3.49		
I to	2×IC ₅₀	-76.0	46.4	115	39.4	263	376	428	478	3.64		
	FULL	-76.0	46.2	116	40.5	263	379	433	482	3.79		

Table S1b – AP biomarkers percent variations with respect to the control AP induced by the different blockade levels in the stimulated ventricular-like model. ^a: biomarkers computed 7s after I_{Kr} blocker administration. ^b: biomarkers computed after 10 beats after I_{NaCa} full block of, due to non-representative ionic concentration at the steady state.

			Percent variation (%)									
		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90	APD _{ratio}		
	0.1×IC ₅₀	0	-6	-1	-4	3	1	0	0	-1		
1	IC ₅₀	0	-39	-6	-18	13	4	1	1	-17		
Na	2×IC ₅₀	1	-53	-7	-23	14	3	0	1	-20		
	FULL	1	-78	-10	-32	13	2	-1	1	-30		
	0.1×IC ₅₀	0	3	1	1	-13	-10	-9	-8	1		
	IC ₅₀	0	9	2	5	-72	-59	-54	-52	-7		
CaL	2×IC ₅₀	0	5	0	2	-82	-73	-68	-66	-35		
	FULL	-1	-4	-4	-9	-91	-87	-83	-80	-69		
	0.1×IC ₅₀ ^a	0	-1	0	-1	5	5	5	5	4		
1	IC_{50}^{a}	0	-20	-4	-12	44	43	40	38	13		
IKr	$2 \times IC_{50}^{a}$	0	-35	-6	-17	63	64	59	56	38		
	FULL ^a	-6	-70	-17	-39	117	125	111	100	142		
	0.1×IC ₅₀	0	0	0	0	0	0	0	0	0		
I _{Ks}	IC ₅₀	0	-1	0	0	2	2	2	1	2		
	2×IC ₅₀	0	-1	0	-1	3	2	2	2	4		
	FULL	0	-1	0	-1	4	4	3	3	6		
	0.1×IC ₅₀	-1	-11	-3	-5	8	4	4	4	-11		
1	IC ₅₀	-9	-53	-9	-10	26	18	24	28	-49		
IK1	2×IC ₅₀	-16	-65	-14	-12	30	22	34	50	-73		
	FULL				REPOL	ARIZATION	I FAILURE					
	0.1×IC ₅₀	0	3	1	1	0	0	0	1	3		
	IC ₅₀	1	15	3	7	1	2	3	3	5		
If	2×IC ₅₀	1	21	4	9	1	3	3	4	6		
	FULL	3	35	7	15	2	5	5	7	9		
	0.1×IC ₅₀	0	0	0	0	1	-1	-1	-2	5		
1.	IC ₅₀	-1	-2	0	2	8	-1	-4	-7	9		
NaCa	2×IC ₅₀	-1	-1	2	6	11	1	-3	-8	24		
	FULL ^b	11	59	19	33	-14	-15	-18	-22	69		
	0.1×IC ₅₀	0	0	0	0	0	0	0	0	2		
	IC ₅₀	0	-1	0	1	2	2	2	1	2		
Ito	2×IC ₅₀	0	-2	1	2	2	2	2	2	7		
	FULL	0	-3	2	5	2	3	4	3	11		

Table S2a – AP biomarkers changes induced by the different blockade levels in the stimulated atrial-like
model. ^a : biomarkers computed 7s after I _{Kr} blocker administration. ^b : biomarkers computed after 10 beats
after I_{NaCa} full block of, due to non-representative ionic concentration at the steady state.

		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90	APD _{ratio}		
		(mV)	(V/s)	(mV)	(mV)	(ms)	(ms)	(ms)	(ms)			
	Control	-71.3	33.9	100	28.8	167	222	267	357	1.09		
	0.1×IC ₅₀	-71.5	31.9	101	29.1	169	223	268	358	1.11		
1	IC ₅₀	-72.6	21.6	100	27.8	177	229	270	361	1.11		
Na	2×IC ₅₀	-72.9	17.2	100	26.7	178	230	269	358	1.15		
	FULL	-73.6	10.2	99	25.3	176	238	279	366	1.24		
	0.1×IC ₅₀	-71.2	35.5	100	28.6	155	206	247	323	1.19		
1.	IC ₅₀	-71.2	37.9	101	29.6	91	133	163	198	1.62		
I CaL	2×IC ₅₀	-71.2	35.0	100	28.7	65	102	131	159	1.59		
	FULL	-71.1	30.5	92	21.1	31	58	86	114	1.05		
	0.1×IC ₅₀ ^a	-71.4	32.8	100	29.1	173	230	281	378	1.08		
	IC_{50}^{a}	-70.1	23.9	98	27.8	209	294	379	499	1.03		
IKr	$2 \times IC_{50}^{a}$	-68.6	19.8	95	26.6	227	333	438	557	1.10		
	FULL ^a	-60.3	11.7	83	22.3	257	424	580	678	1.47		
	0.1×IC ₅₀	-71.3	34.0	100	28.9	167	222	267	357	1.11		
I _{Ks}	IC ₅₀	-71.3	33.7	100	28.8	168	223	269	359	1.12		
	2×IC ₅₀	-71.3	33.7	100	28.8	169	224	270	359	1.10		
	FULL	-71.2	33.6	100	28.8	170	225	271	361	1.10		
	0.1×IC ₅₀	-70.2	29.9	100	29.4	174	231	281	376	1.03		
1	IC ₅₀	-57.0 13.2 85 28.3 192 264 349 563										
IK1	2×IC ₅₀											
	FULL				REPUL	ARIZATIOI	NFAILURE					
	0.1×IC ₅₀	-71.4	34.2	100	28.9	168	223	268	358	1.10		
1.	IC ₅₀	-71.9	35.4	101	29.3	170	226	272	366	1.09		
If	2×IC ₅₀	-71.9	36.1	101	29.6	170	226	272	365	1.09		
	FULL	-72.9	37.4	103	30.1	174	231	276	378	1.04		
	0.1×IC ₅₀	-71.0	33.2	101	30.3	176	231	274	349	1.31		
1.	IC ₅₀	-70.9	32.3	107	35.9	220	282	319	357	2.25		
INaCa	2×IC ₅₀	-72.9	34.9	111	38.5	236	301	337	369	2.74		
	FULL ^b	-85.6	10.5	141	55.6	171	255	290	315	4.57		
	0.1×IC ₅₀	-71.2	33.7	101	29.6	168	223	269	358	1.12		
1	IC ₅₀	-71.0	32.5	103	31.5	171	231	279	366	1.23		
Ito	2×IC ₅₀	-70.9	32.0	103	32.4	172	234	283	369	1.27		
	FULL	-70.7	31.1	105	34.2	174	241	292	375	1.38		

Table S2b – AP biomarkers percent variations with respect to the control AP induced by the different blockade levels in the stimulated atrial-like model. ^a: biomarkers computed 7s after I_{Kr} blocker administration. ^b: biomarkers computed after 10 beats after I_{NaCa} full block of, due to non-representative ionic concentration at the steady state.

			Percent variation (%)										
		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90	APD _{ratio}			
	0.1×IC ₅₀	0	-6	1	1	1	1	0	0	2			
	IC ₅₀	2	-36	0	-4	6	3	1	1	1			
Na	2×IC ₅₀	2	-49	0	-7	7	4	1	0	6			
	FULL	3	-70	-1	-12	5	7	4	3	14			
	0.1×IC ₅₀	0	5	0	-1	-7	-7	-7	-9	9			
1.	IC ₅₀	0	12	1	3	-45	-40	-39	-44	49			
CaL	2×IC ₅₀	0	3	0	0	-61	-54	-51	-55	46			
	FULL	0	-10	-8	-27	-82	-74	-68	-68	-3			
	0.1×IC ₅₀ ^a	0	-3	0	1	3	4	5	6	-1			
I _{Kr}	IC_{50}^{a}	-2	-30	-2	-4	25	33	42	40	-5			
	2×IC ₅₀ ^a	-4	-42	-5	-8	36	50	64	56	1			
	FULL ^a	-15	-65	-17	-23	54	92	117	90	35			
	0.1×IC ₅₀	0	0	0	0	0	0	0	0	1			
I _{Ks}	IC ₅₀	0	-1	0	0	1	1	1	1	3			
	2×IC ₅₀	0	-1	0	0	1	1	1	1	1			
	FULL	0	-1	0	0	2	2	2	1	1			
	0.1×IC ₅₀	-2	-12	-1	2	4	4	5	5	-6			
lua -	IC ₅₀	-20	-61	-15	-2	15	19	31	58	-59			
IKJ	2×IC ₅₀	REDOLARIZATION FAILURE											
	FULL												
	0.1×IC ₅₀	0	1	0	0	0	0	0	0	1			
	IC ₅₀	1	4	1	2	2	2	2	3	0			
Iţ	2×IC ₅₀	1	7	1	3	2	2	2	2	0			
	FULL	2	10	3	4	4	4	3	6	-4			
	0.1×IC ₅₀	0	-2	1	5	5	4	3	-2	20			
lu a	IC ₅₀	-1	-5	7	24	32	27	19	0	106			
Naca	2×IC ₅₀	2	3	11	33	41	36	26	3	151			
	FULL ^b	20	211	41	93	2	15	8	-12	319			
	0.1×IC ₅₀	0	-1	1	2	1	1	1	0	3			
L.	IC ₅₀	0	-4	2	9	2	4	4	3	13			
I to	2×IC ₅₀	-1	-6	3	12	3	6	6	4	16			
	FULL	-1	-8	5	19	4	9	9	5	26			

Table S3a – AP biomarkers changes induced by the different blockade levels in the adult ORd model (I_f not present in the ORd model).^a: biomarkers computed 7s after I_{Kr} blocker administration.^b: biomarkers computed after 10 beats after I_{NaCa} full block

		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90	APD _{ratio}
		(mV)	(V/s)	(mV)	(mV)	(ms)	(ms)	(ms)	(ms)	
	Control	-88.0	259	128	40.0	166	208	240	268	1.60
	0.1×IC ₅₀	-88.0	237	127	38.9	168	208	242	269	1.59
	IC ₅₀	-88.0	125	125	36.8	173	212	245	273	1.63
Na	2×IC ₅₀	-88.0	80	125	36.7	171	211	244	272	1.60
	FULL	-88.2	80	40	-48.0	62	77	89	100	1.81
	0.1×IC ₅₀	-88.1	260	128	39.9	162	204	237	263	1.83
1.	IC ₅₀	-88.1	263	126	38.4	139	178	209	237	1.50
ICaL	2×IC ₅₀	-88.1	266	126	37.9	126	165	199	225	1.52
	FULL	-88.1	273	126	37.5	82	131	172	200	1.73
	0.1×IC ₅₀ ^a	-87.9	258	128	40.0	175	218	254	282	1.56
	IC_{50}^{a}	-87.9	260	128	40.5	215	282	339	379	1.76
۱Kr	$2 \times IC_{50}^{a}$	-87.9	259	128	40.5	239	324	401	446	1.64
	FULL ^a				REPOL	ARIZATION	V FAILURE			
	0.1×IC ₅₀	-88.0	259	128	40.0	166	209	240	269	1.53
	IC ₅₀	-88.0	259	128	40.1	170	215	249	276	1.82
IKS	2×IC ₅₀	-88.0	259	128	40.1	174	217	250	279	1.53
	FULL	-87.9	259	128	39.8	180	223	258	285	1.89
	0.1×IC ₅₀	-88.0	259	128	40.1	165	208	241	269	1.72
	IC ₅₀	-88.2	262	128	40.2	166	208	242	280	1.41
IK1	2×IC ₅₀	-88.3	264	129	40.4	166	208	242	287	1.16
	FULL	-92.8	273	136	42.8	165	208	248	352	0.94
	0.1×IC ₅₀	-88.0	259	128	40.1	163	205	238	265	1.67
1	IC ₅₀	-88.0	261	128	40.2	150	190	221	249	1.47
NaCa	2×IC ₅₀	-88.0	262	128	40.2	149	185	216	244	1.31
	FULL ^b	-88.0	262	128	40.2	142	176	204	229	1.46
	0.1×IC ₅₀	-88.0	259	128	40.3	166	207	240	267	1.61
L.	IC ₅₀	-88.0	259	129	41.4	164	207	240	268	1.76
Ito	2×IC ₅₀	-88.0	259	130	41.9	162	205	240	268	1.87
	FULL	-87.9	259	131	43.1	160	205	239	267	1.95

Table S3b – AP biomarkers percent variations with respect to the control AP induced by the different blockade levels in the adult ORd model. ^a: biomarkers computed 7s after I_{Kr} blocker administration. ^b: biomarkers computed after 10 beats after I_{NaCa} full block

			Percent variation (%)											
		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90	APD _{ratio}				
	0.1×IC ₅₀	0	-8	-1	-3	2	0	1	0	-1				
	IC ₅₀	0	-52	-3	-8	4	2	2	2	2				
Na	2×IC ₅₀	0	-69	-3	-8	3	2	2	1	0				
	FULL	0	-46	-3	-11	-1	2	2	1	13				
	0.1×IC ₅₀	0	1	0	0	-2	-2	-1	-2	14				
1.	IC ₅₀	0	2	-1	-4	-16	-14	-13	-12	-6				
ICaL	2×IC ₅₀	0	3	-2	-5	-24	-21	-17	-16	-5				
	FULL	0	5	-2	-6	-50	-37	-28	-25	8				
	0.1×IC ₅₀ ^a	0	0	0	0	6	5	6	5	-3				
1	IC_{50}^{a}	0	0	0	1	30	36	41	41	10				
IKr	2×IC ^a 50	0	0	0	1	45	56	67	66	2				
	FULL ^a		REPOLARIZATION FAILURE											
	0.1×IC ₅₀	0	0	0	0	0	1	0	0	-5				
I	IC ₅₀	0	0	0	0	3	4	4	3	14				
IKS	2×IC ₅₀	0	0	0	0	5	4	4	4	-5				
	FULL	0	0	0	-1	9	7	8	6	18				
	0.1×IC ₅₀	0	0	0	0	-1	0	1	0	8				
1	IC ₅₀	0	1	0	1	0	0	1	4	-12				
I K1	2×IC ₅₀	0	2	1	1	0	0	1	7	-28				
	FULL	5	5	6	7	0	0	3	31	-41				
	0.1×IC ₅₀	0	0	0	0	-1	-1	-1	-1	4				
l	IC ₅₀	0	1	0	0	-9	-8	-8	-7	-8				
INaCa	2×IC ₅₀	0	1	0	1	-10	-11	-10	-9	-18				
	FULL ^b	0	1	0	0	-15	-15	-15	-15	-9				
	0.1×IC ₅₀	0	0	0	1	0	0	0	0	1				
1.	IC ₅₀	0	0	1	3	-1	-1	0	0	10				
I to	2×IC ₅₀	0	0	2	5	-2	-1	0	0	17				
	FULL	0	0	2	8	-4	-1	0	-1	22				

Table S4– Comparison between spontaneous (GRAY) and stimulated (WHITE) ventricular-like hiPSC-CM APs. Biomarkers are presented as percent variations with respect to the control AP induced by the different blockade levels in the stimulated ventricular-like model. ^a: biomarkers computed 7s after I_{Kr} blocker administration. ^b: biomarkers computed after 10 beats after I_{NaCa} full block.

			Percent variation (%)										
		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90				
	0.1.10	0	-13	-1	-6	2	2	1	0				
	0.1×1C ₅₀	0	-6	-1	-4	3	3	1	0				
	10				NO SPON	TANEOUS A	Ps	•					
I _{Na}	IC ₅₀	0	-39	-6	-18	13	13	4	1				
	0.10				NO SPON	TANEOUS A	Ps	•					
	2×1C ₅₀	1	-53	-7	-23	14	3	0	1				
	0.1.10	0	-2	-2	-6	-14	-12	-11	-9				
	0.1×1C ₅₀	0	3	1	1	-13	-10	-9	-8				
	10	-2	-17	-11	-36	-67	-56	-50	-44				
CaL	IC ₅₀	0	9	2	5	-72	-59	-54	-52				
	2,40	-3	-17	-14	-46	-79	-71	-65	-58				
	2×1050	0	5	0	2	-82	-73	-68	-65				
		0	1	0	1	4	5	4	4				
	0.1×1050	0	-1	0	-1	5	5	5	5				
L.		0	3	1	2	31	34	32	30				
IKr	1050	0	-20	-4	-12	44	43	40	38				
	2×IC ₅₀ ^a	0	3	1	2	47	52	50	45				
		0	-35	-6	-17	63	64	59	56				
	0.1×IC.	0	0	0	0	0	0	0	0				
	0.101050	0	0	0	0	0	0	0	0				
v.	IC _{EO}	0	0	0	0	1	1	1	1				
IKS	1030	0	-1	0	0	2	2	2	1				
	2×IC50	0	0	0	0	2	2	1	1				
		0	-1	0	-1	2	2	2	2				
	0.1×IC ₅₀	-1	-18	-1	-2	8	5	5	6				
		-1	-11	-3	-5	8	4	4	4				
V1	IC ₅₀	-9	-79	-6	2	39	31	36	48				
• • • • •	- 50	-9	-53	-9	-9	26	18	24	28				
	2×IC ₅₀	-15	-80	-9	10	47	39	54	78				
		-10	-05	-14	-12	30	1	34	50				
	0.1×IC ₅₀	0	9	1	4	0	0	0	1				
		1	58	7	24	-3	3	5	5				
l _f	IC ₅₀	1	15	3	24	-5	2	3	3				
-		2	88	10	35	-5	5	7	6				
	2×IC ₅₀	1	21	4	9	1	3	3	4				
		0	1	0	2	0	-1	-2	-2				
	0.1×IC ₅₀	0	0	0	0	1	-1	-1	-2				
		-1	5	4	16	6	-2	-6	-8				
NaCa	IC ₅₀	-1	-2	0	2	8	-1	-4	-7				
		-1	6	6	25	10	0	-5	-8				
	2×IC ₅₀	-1	-1	2	6	11	1	-3	-8				
	0.1.10	0	0	0	0	0	0	0	0				
	U. I ×IC ₅₀	0	0	0	0	0	0	0	0				
1	10	0	0	1	3	0	1	1	1				
Ito	IC50	0	-1	0	1	2	2	2	1				
	2,40	0	0	1	5	0	1	2	2				
	2×IC ₅₀	0	-2	1	2	2	2	2	2				

Table S5 – Comparison between spontaneous (GRAY) and stimulated (WHITE) atrial-like hiPSC-CM APs. Biomarkers are presented as percent variations with respect to the control AP induced by the different blockade levels in the stimulated atrial-like model.^a: biomarkers computed 7s after I_{Kr} blocker administration.^b: biomarkers computed after 10 beats after I_{NaCa} full block.

			Percent variation (%)										
		MDP	VMax	APA	Peak	APD30	APD50	APD70	APD90				
	0.1.10	0	-9	0	0	2	2	1	0				
	0.1×1C ₅₀	0	-6	1	1	1	1	0	0				
1	IC	1	-59	0	-5	9	9	7	4				
Na	IC 50	2	-36	0	-4	6	3	1	1				
	2~10	2	-71	0	-4	23	25	27	16				
	2×1050	2	-49	0	-7	6	4	1	0				
		0	-3	-2	-6	-9	-9	-10	-11				
	0.1×1050	0	5	0	-1	-7	-7	-7	-9				
	IC.co	-2	-29	-13	-43	-41	-41	-41	-41				
CaL	1050	0	12	1	3	-45	-40	-39	-44				
	2×IC₅₀	-3	-42	-20	-67	-53	-51	-49	-48				
	2:1050	0	3	0	0	-61	-54	-51	-55				
	0.1×IC₅₀ ^a	0	-3	0	2	7	8	9	8				
	011 1030	0	-3	0	1	3	4	5	6				
Vr.		-2	-23	3	16	65	73	81	70				
•Kí	10.00	-2	-30	-2	-4	25	33	42	40				
	2×10^{50}	-4	-36	4	26	106	123	140	116				
		-4	-42	-5	-8	36	50	64	56				
	0.1×IC50	0	0	0	0	0	0	0	0				
		0	0	0	0	0	0	0	0				
V.c.	IC 50	0	-1	0	0	1	1	1	1				
' NS		0	-1	0	0	1	1	1	1				
	2×IC ₅₀	0	-1	0	0	1	1	1	1				
		0	-1	0	0		I E	l G	0				
	0.1×IC ₅₀	-1	-21	-1	0	С Д	С 4	5	0 5				
		-2	-12	-1	2	4	4	5 45	5 76				
I _{K1}	IC ₅₀	-14	-04	-11	-0	15	20	40	70 59				
		REPOLARIZATION FAILURE											
	2×IC ₅₀												
		0	4	0			1	1	0				
	0.1×IC ₅₀	0	1	0	0	0	0	0	0				
		1	30	3	7	4	5	5	3				
f	IC ₅₀	1	4	1	2	2	2	2	3				
	0.10	1	44	4	12	5	7	6	4				
	2×IC ₅₀	1	7	1	2	2	2	2	2				
	0.1.10	0	-3	1	3	5	4	2	-2				
	0.1×1C ₅₀	0	-2	1	5	5	4	3	-2				
	10	-1	-21	6	23	36	29	20	3				
NaCa	IC ₅₀	-1	-5	7	24	32	27	19	0				
	2.10	1	-26	9	32	51	42	30	9				
	2×1050	2	3	11	33	41	36	26	3				
	0.1.10	0	-1	0	1	0	1	1	0				
	0.1×10 ₅₀	0	-1	1	2	1	1	1	0				
L	IC	0	-3	2	7	1	3	3	2				
Ito	1050	0	-4	2	9	2	4	4	3				
	2×10	0	-4	2	9	1	4	4	3				
	2×IC ₅₀	-1	-6	3	12	3	6	6	4				

Supplementary figures

Figure S1 – Details of the effect of I_{Na} block on the upstroke.

Figure S2 - Global comparison of the effect of ionic current blocks on the morphological action potential (AP) biomarkers simulated by the hAdultV-CM model. The pacing rate is 60 bpm. Grey levels represent the percent variation of each biomarker (normalized in the interval [-1, 1]) for each block level. MDP: maximum diastolic potential, V_{Max} : maximum upstroke velocity, APA: action potential amplitude, Peak: peak voltage, APD_{xx}: action potential duration at XX% of repolarization.

Figure S3 – I_f block effects on VL hiPSC-CM and hAL hiPSC-CM. In panels B and C the effects on MDP and Peak have been detailed, respectively.

Figure S4 – Assessment of the different contributions that sustain the AP In the hAdultV-CM (ORd) model and comparison with full I_{CaL} block in VL hiMPSC-CM. Black, green and magenta traces refer to hAdultV-CM hybridized with the VL hiPSC-CM I_{NaCa} . The red trace refers to the hAdultV-CM model where its original I_{NaCa} .

Figure S5 – Assessment of the repolarization reserve in VL hiPSC-CM and hAdultV-CM. A and B: comparison of different I_{K1} blocks on the APs and the underlying I_{Kr} . C: compensation of the I_{K1} block by doubling I_{Kr} (increment to 80 bpm of the pacing rate is needed to avoid spontaneous APs). D: the halved I_{Kr} and the consequent slower repolarization show how I_{Kr} compensates the absence of I_{K1} in adult cells.

Figure S7 – Ca^{2+} concentration in conditions of I_{NaCa} block. Peak of hAdultV-CM Ca^{2+} transient equals to 0.022 mM.

0.4

Time (s)

0.2

0.6

0.8

0.2

0 0

0.2

0.4

0.6

Time (s)

0.8

0.2

0**k** 0

0.8

0.6

Bibliography

0.2

0

0.2

0.4

Time (s)

O'Hara T, Virág L, Varró A, and Rudy Y (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Comput Biol 7: e1002061.

Paci M, Hyttinen J, Aalto-Setälä K, and Severi S (2013). Computational models of ventricular- and atrial-like human induced pluripotent stem cell derived cardiomyocytes. Ann Biomed Eng 41: 2334–2348.