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Summary Sentence 

Features are weighted based on their evolutionary conservations and t test p-values during the 

feature selection step, while un-weighted selected features are used in an ensemble of random 

forest modeling. 

 

Background/Introduction 

From the perspective of long-term evolutionary history, cancer genes are highly conserved 

among species [1]. In the same vein, cancer driver mutations are almost always found at 

evolutionarily conserved positions that lead to deleterious loss- or gain- of functions [2]. Based 

on these observations, it is reasonable to infer that changes of expression levels, another 

mechanism of functional regulation, will have more profound impact if they involve highly 

conserved proteins, as compared to less conserved proteins. In fact, studies have shown that 

expression level is a strong correlate of evolutionary conservation [3]. Therefore, I designed a 

weighting scheme to improve the RPPA data in predicting AML remissions [4]. 

The basic idea is to give higher weights to conserved proteins and lower weights to variable 

proteins. Conservation of a protein can be calculated using evolutionary approaches (see 

Method). Furthermore, differentially expressed proteins shall be given higher weights, which can 

be represented by p-values from student t tests. A combination of these two measurements 

gives rise to the final weights. 

After each feature is transformed using its specific weight, feature selection is performed. This 

process will favor features that are more evolutionarily conserved and more differentially 

distributed between two classes. In the classification step, models are built upon selected but 

un-weighted features. 

 

Methods 

Preprocessing data: Categorical features were coded using dummy variables. For each feature, 

the raw values were transformed to z scores, which had mean of 0 and standard deviation of 1. 

Missing values were imputed by random sampling. Four features with low information content 

(entropy<0.05) were removed. Since no two features shared > 95% correlation, all of them were 

treated as independent features.  
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Calculating weights: For each protein, the multiple 

sequence alignments of 46 vertebrates (Figure 1) were 

downloaded from the UCSC Genome Browser [5]. At a 

given position, the evolutionary rate (r) is calculated as 

the number of substitutions per billion years [6]. The 

conservation of a protein is measured as the average 

of r over all positions. Because high evolutionary rate 

indicates low conservation, the reciprocal of 

evolutionary rate (1/r) is used as the evolutionary 

weight (WE) for each protein. For clinical features, the 

evolutionary weights were set to be the maximum of 

WE. For each feature, a two-side student t test was 

performed. P-values were transformed via negative 

logarithm (-log(P)) and used as the differential weight 

(WD). For each feature i, the final weight was the sum 

of evolutionary and differential weights (Wi = WEi + 

WDi).  

Constructing ensemble models: Because the training data are highly unbalanced, we employed 

an ensemble approach that constructs multiple classification models using balanced 

subsamples [7]. Specifically, a subset of 50 samples was randomly selected from each class 

(CR labeled as 1, Resistant labeled as 0). This number was determined as 90% of samples in 

the under-represented resistant class. In the feature selection step, values of each feature were 

multiplied by their corresponding weights. Then, stability selection [8] with sparse logistic 

regression was performed, as implemented in the SLEP package [9]. During stability selection, 

bootstrapping was used to identify features that were consistently selected among multiple runs 

with a wide range of regularization parameters. Features identified in >50% of bootstrapping 

runs were selected. In the classification step, selected features with un-weighed values were 

used to construct a random forest model with 50 trees. The above procedure was repeated 100 

times, which produced an ensemble of 100 random forest models. 

Making predictions: For each sample in the testing dataset, we derived 100 predictions, one 

from each random forest model. The confidence score equals the percentage of models that 

predict the sample as CR.  

Multiple submissions: In total, I submitted the predictions twice. The first submission was 

derived from an ensemble of 30 random forest models. The final submission was from 100 

models. The correlation between these two submissions was very high (97%). It will be 

interesting to compare predictions with and without using the weighting scheme. Unfortunately, 

because I joined the project only two weeks before its closing date, I missed the opportunity to 

test different models. 

 

Conclusion/Discussion 

Figure 1. An evolutionary timetree of 46 

species used for deriving evolutionary 
rate for each protein position. 



Because I only have one submission scored (submission ID: 2669636), it is hard to assess the 

contribution of evolutionary and differential weights to the prediction accuracy. However, this 

single submission achieved BAC score of 0.7283 and AUROC score of 0.7704, which had an 

overall rank of #1 in the week of September 8th. Therefore, the performance of this approach is 

at least comparable to other top-ranked methods.  

Meanwhile, I am aware that team YL also participated in the Challenge. The lead of team YL, Dr. 

Ye, is a close collaborator of mine. In the classification step, both of our teams used an 

ensemble of random forest models. However, team YL took a different strategy in the feature 

selection step. Once the models from our two teams are disclosed, we will be able to infer the 

contribution of evolutionary and differential weights to the prediction accuracy. However, the 

ultimate evaluation will come from more systematic comparisons. 
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Introduction 

My approach was to develop a General Linear Model (GLM) class of base learner, using bootstrapping for 

model training and repeated random sub-sampling for validation. The use of a GLM framework was 

motivated by both its effectiveness and easy interpretation.  Since the amount of data available was limited, 

I used bootstrapping for parameter selection and validation of my model. 

I approached this problem without the use of any prior biological or medical knowledge, allowing the model 

to discern which features and feature combinations are most informative.  In particular, I was interested in 

testing combinations and interactions of features using both RPPA data and clinical data.  

Method 

To pre-process the data, I first excluded clinical covariates that contained many “NA” values. While that 

could lead to information loss, I decided to use only parameters that contain sufficient information.  

 

Model construction consists of several steps: 

 

1)  I created a list with all parameters and all possible linear combination of 2 and 3 parameters.  

 

2)  I checked the prediction ability for those models.  I found that even if model consisting of one parameter 

has low prediction ability, some combination with that parameter could still have good predictive ability.   

 

3) For each model, I split the initial data set into 2 parts and increased number of patients with 

bootstrapping.  In general I had increased number of patients with CR and Resistant status to 1000 each by 

sampling with replacement. I repeated this step 1000 times and calculated the median BAC score for each 

model. 

 

4) Next I sorted all the models by BAC score and selected all models with scores more than 0.5. 

 

5) Finally, I found the best combinations of features from models with high scores. I started from best model 

and added successive models with lower scores.  Analysis of predictive power was the same.  If new model 

has higher score it becomes best model. 

 

Conclusion  

Using GLM method with multiple linear combinations yielded favorable results with the benefit of having a 

final model that is easy to interpret.  One disadvantage was that this method required a great deals of 

computational time and power. 
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Summary

We implemented a bootstrap aggregated (bagged) Cox-like semi-parametric model with carefully
selected predictors as a predictive model for remission duration for the AML sub-challenge 2.

1 Introduction

Why a bagged semi-parametric model

• The performance of the benchmark model using a standard Cox model with five selected
clinical predictors is comparable to the top models on the leaderboard and better than our
previous models such as survival random forests, boosted quantile regression, and weighted
linear model.

• A native average over all submissions in sub-challenge 2 & 3 performs surprisingly well on
the leaderboard, so we reasoned that averaging (via bagging) would be a viable strategy
to reduce the variance.

Variable selection

• The benchmark model, with an impressive performance, uses only five selected clinical
variables.

• From our work on sub-challenge 1, our model performance decreased whenever we incor-
porated one or more of the protein data, so we omitted this data from our models for
sub-challenge 2 & 3 model.

• Based on these observations we started with the selected five clinical variables, i.e., Age.at.Dx,
Chemo.Simplest, HGB, ALBUMIN and cyto.cat.

Missing values

1



Since there are only a few missing values of the selected variables in the training and testing
sets, we simply replace them by the medians and modes for continuous and discrete variables
respectively.

2 Methods

2.1 Preprocessing: re-categorizing ‘cyto.cat’

This part was done and shown in the supplement for sub-challenge 3, using overall survival time
as outcome. We didn’t re-do the analysis for remission duration as the results were shown in [1]
to be similar. The re-categorized cyto.cat is shown in Table 1.

Risk Category Abnormality
High ’-5,-7’, ’-5,-7,+8’, ’-7’, ’-7,+8’
Intermediate (baseline) ’-5’, ’11q23’, ’8’, ’IM’, ’Misc’, ’t6;9’, ’t9;22’, ’inv9’
Intermediate-low ’diploid’
Lower ’inv16’, ’t8;21’

Table 1: New cytogenetics categories.

2.2 Model

An appropriate model for bagging is one that should be unbiased with high variation. For this
purpose, we added some ‘frailty’ terms (inspired by frailty in survival model and the positivity
of the selected continuous variables) to the standard Cox proportional hazard model as

λ(t|x, z) = λ0(t)xα exp(xβ + zγ) (1)

where x is a vector of positive continuous variates and z is a vector of discrete variables, and

xα := (x1, · · · , xk)(α1,··· ,αk) :=

k∏
i=1

xαi
i .

Indeed, equation (1) is equivalent to

λ(t|x, z) = λ0(t) exp((log x)α+ xβ + zγ). (2)

We draw B = 1000 bootstrap samples. With each bootstrap sample, model (2) is fitted
with R function coxph(R-3.1.1, survival-2.37-7). The final prediction from this bagged model is
a simple average over all B = 1000 base models. Out-of-bag (OOB) samples are used to assess
the performance, which typically slightly underestimates the performance. The OOB samples
gives an estimate of 0.640 for Pearson correlation coefficient and 0.671 for C-index.
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2.3 Quantiles for survival time (remission duration) prediction

The remaining question was to choose a survival time (remission duration) for prediction. A
typical choice is the median survival time. However, Figure 1 shows that percentiles in interval
[0.1, 0.2] seem to be better choices. Again, motivated by model averaging, we chose to average
survival quantiles over this interval as the final prediction. The performances, shown by the
circled points on the right-most, look better than any single quantile.

survival (no relapsed) probability
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Figure 1: C-index (CI) and Pearson correlation coefficient (PCC) versus chosen survival (no relapsed) probability. The
two circled points on the right-most side represent the performance of estimate by averaging over survival probability
interval of [0.1, 0.2].

3 Conclusion and Discussion

• The idea of averaging seems to give a better predictive model, though it generally produces
a model hard to interpret.

• Our model used five clinical variables, Age.at.Dx, Chemo.Simplest, HGB, ALBUMIN and
the re-categorized cyto.cat. Including additional clinical and/or proteomic variables, de-
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termined by using a minimal-depth, survival random forest model [3], did not substantially
improve model performance.

• Interactions and quadratic effects of the five selected variables were added to the model,
but no significant improvement was observed.
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Summary

We implemented a bootstrap aggregated (bagged) Cox-like semi-parametric model with carefully
selected predictors as a predictive model for overall survival time for sub-challenges 3.

1 Introduction

Why a bagged semi-parametric model

• The performance of the benchmark model using a standard Cox model with five selected
clinical predictors is comparable to the top models on the leaderboard and better than our
previous models such as survival random forests, boosted quantile regression, and weighted
linear model.

• A native average over all submissions in sub-challenge 2 & 3 performs surprisingly well on
the leaderboard, so we reasoned that averaging (via bagging) would be a viable strategy
to reduce the variance.

Variable selection

• The benchmark model, with an impressive performance, uses only five selected clinical
variables.

• From our work on sub-challenge 1, our model performance decreased whenever we incor-
porated one or more of the protein data, so we omitted this data from our models for
sub-challenge 2 & 3 model.

• Based on these observations we started with the selected five clinical variables, i.e., Age.at.Dx,
Chemo.Simplest, HGB, ALBUMIN and cyto.cat.

Missing values

1



Since there are only a few missing values of the selected variables in the training and testing
sets, we simply replace them by the medians and modes for continuous and discrete variables
respectively.

2 Methods

2.1 Preprocessing: re-categorizing ‘cyto.cat’

Cytogenetics (cyto.cat in AML dataset) is the single most prognostic factor in AML [1]. The
distribution of patients across all cytogenetics categories in the AML data is imbalanced. This
will negatively affect the performance of a bootstrapped model because some levels might be
missing in a bootstrapped sample. Hence, we resolved to re-categorize the cytogenetics category
into fewer, more balanced levels.

category -5 -5,-7 -5,-7,+8 -7 11q23 21 8
frequency 4 8 3 5 7 2 12

category IM Misc diploid inv16 inv9 t6;9 t8;21
frequency 3 33 90 11 1 2 10

Table 1: Frequencies of levels of cyto.cat in training set.
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Figure 1: Coefficients vs log λ. The numbers inside the figure indicating the index number of levels as
in the same order in Table 1, with level ‘-5’ chosen to be the baseline. So ‘-5’ indicates level ‘-5,-7’ and
‘13’ indicats ‘t8;21’. Figure is plotted using BPG [4].
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To this end, we fit a Cox model using ‘cyto.cat’ with an elastic-net penalty (R package
glmnet-1.9.8 ). We set α = 0.5 (the elastic-net penalty) in

λ(α|β|+ (1− α)|β|2/2).

Other values of α produced similar shrinkage paths to that in Figure 1. Based on Figure 1,
we re-categorized ‘cyto.cat’ into 4 categories in Table 2. The ‘diploid’ category remains the
same because it is the most abundant. The ‘t6;9’ category, which is not in the training data, is
grouped with ‘t9;22’ for similarity. The ‘inv9’ category is grouped in the baseline category with
all other chromosome 9 abnormalities because there is only one sample with this category in the
training data. Lastly, the level ‘-7,+8’ in the test sets is thought to be similar to ‘-5,-7,+8’ and
is consistent with the cytogenetic categories in Grimwade et al. [1] and Bennett [2].

Risk Category Abnormality Counts
High ‘-5,-7’, ‘-5,-7,+8’, ‘-7’, ‘-7,+8’ 16
Intermediate (baseline) ‘-5’, ‘11q23’, ‘8’, ‘IM’, ‘Misc’, ‘t6;9’, ‘t9;22’, ‘inv9’ 62
Intermediate-low ‘diploid’ 90
Lower ‘inv16’, ‘t8;21’ 21

Table 2: New cytogenetics categories.

2.2 Model

An appropriate model for bagging is one that should be unbiased with high variation. For this
purpose, we added some ‘frailty’ terms (inspired by frailty in survival model and the positivity
of the selected continuous variables) to the standard Cox proportional hazard model as

λ(t|x, z) = λ0(t)xα exp(xβ + zγ) (1)

where x is a vector of positive continuous variates and z is a vector of discrete variables, and

xα := (x1, · · · , xk)(α1,··· ,αk) :=

k∏
i=1

xαi
i .

Indeed, equation (1) is equivalent to

λ(t|x, z) = λ0(t) exp((log x)α+ xβ + zγ). (2)

We draw B = 500 bootstrap samples. With each bootstrap sample, model (2) is fitted with
R function coxph (R-3.1.1, survival-2.37-7). The final prediction from this bagged model is a
simple average over all B = 500 base models. Out-of-bag (OOB) samples are used to assess the
performance, which typically slightly underestimates the performance. The OOB samples gives
an estimate of 0.618 for Pearson correlation coefficient and 0.678 for C-index. Similar models
with interaction and quadratic terms did not improve model performance.

2.3 Quantiles for survival time prediction

The remaining question was to choose a survival time for prediction. Typically, the median
survival time is used, however, percentiles in interval [0.1, 0.3] seem to be better choices (Figure
2). Again, motivated by model averaging, we chose to average survival quantiles over this
interval for the final prediction. The performance, shown by the horizontal lines in Figure 2 is
better than any single quantile.
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Figure 2: C-index (CI) and Pearson correlation coefficient (PCC) versus chosen survival probability. The horizontal lines
represent the performance of estimate by averaging over survival probability interval of [0.1, 0.3]. Figure is plotted using
BPG [4].

3 Experimental design: which changes improve performance?

Next, we wanted to assess the contribution of each modelling decision (bagging, adding log-
transform of continuous variables, and averaging over survival quantiles) to the overall perfor-
mance of the model. To this end, we performed a 10 fold cross validation with 10 repetitions on
all model permutations as outlined in Table 3. The results, shown in Table 4, reveal that all the
three model components improved PCC, especially using the mean survival quantiles whereas
only bagging significantly improved the CI.

4 Conclusion and Discussion

• Averaging seems to improve model performance at the cost of interpretability.

• Our model used five clinical variables, Age.at.Dx, Chemo.Simplest, HGB, ALBUMIN and
the re-categorized cyto.cat. Including additional clinical and/or proteomic variables, de-
termined by using a minimal-depth, survival random forest model [3], did not substantially
improve model performance.

• Interactions and quadratic effects of the five selected variables were added to the model,
but no significant improvement was observed.
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Bagging Log Transform Mean Survival PCC CI

0 0 0 0.5988 0.6857
0 0 1 0.6138 0.6868
0 1 0 0.6459 0.6622
0 1 1 0.6534 0.6588
1 0 0 0.6153 0.6969
1 0 1 0.6303 0.7011
1 1 0 0.6538 0.6982
1 1 1 0.6578 0.6990

Table 3: Result of a repeated cross-validation.

Effect p-value

PCC
Bagging 0.0113 0.0325
Log Transform 0.0104 0.0423
Mean Survival 0.0382 0.0004

CI
Bagging 0.0254 0.0172
Log Transform 0.0007 0.9221
Mean Survival -0.0131 0.1138

Table 4: Result from linear regression on Pearson’s Correlation Coefficient(PCC) and Concordance Index
(CI).

• Overall, bagging improves both the PCC and CI, whereas the log-transformed terms and
‘averaging over survival quantile‘ only improves the PCC.
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