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MOTIVATING INTUITION FOR BUHMBOX 

Allele dosages are uncorrelated if there is no subgroup heterogeneity 

Our method is built upon the intuition that if there is no subgroup heterogeneity in case 

individuals, then for loci that are independent in control individuals, under the additive 

model assumption, the risk alleles at those loci will be independent in the case 

individuals as well. Although this seems to be intuitive, analytically proving this will set up 

the reasoning for our null hypothesis of no correlations.  

 

We will assume haploid model and consider two loci that are biallelic. If we consider two 

loci together, there will be 4 possible pairs of alleles. Thus, we can define a new “virtual 

locus” that consists of the two loci, which has 4 alleles. To deal with 4 alleles, in the 

following, it will be useful to define the multiallelic odds ratio. For a single biallelic locus, if 

we let 𝑝! and 𝑝! be the risk allele frequencies (RAFs) in cases and controls 

respectively, the biallelic odds ratio (OR) is 

 𝛾 = !!/(!!!!)
!!/(!!!!)

 

Thus, case RAF is a function of OR and control RAF,  

 𝑝! = !!!

(!!!)!!!!
 (1) 

Then we generalize biallelic OR to multiple alleles. Suppose that we have 𝑀 different 

risk alleles in addition to a reference allele (total M+1 alleles). Let 𝑝!! and 𝑝!! be the case 

and control reference allele frequencies. Let 𝑝!! and 𝑝!! be the case and control RAFs of 

allele i (i=1,…,M). The constraints are, 𝑝!! + 𝑝!! +⋯+ 𝑝!! + 𝑝!! = 1 and 𝑝!! + 𝑝!! +⋯+

𝑝!! + 𝑝!! = 1. The multiallelic odds ratios are defined as  

 
𝛾! = !!!/!!

!

!!!/!!
!

. . . . . .
𝛾  !   = !!

! /!!
!

!!
! /!!

!
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Again, case RAF is a function of OR and control RAF. For reference allele,  

 𝑝!! =
!

!! !
!!
!   !

!!!!!
!!!

 (2) 

 and for allele 𝑖=1,…,M,  

 𝑝!! = 𝑝!!𝛾!
!!
!

!!
! (3) 

 

Now recall that we consider two independent biallelic risk loci. Let 𝛾! and 𝛾! be their 

respective ORs and 𝑝!! and 𝑝!! be their control RAFs. Let 𝑝!! and 𝑝!! be the case RAFs, 

which can be derived from equation (1). We assume the standard additive model that, if 

an individual has risk alleles at both loci, the resulting OR is 𝛾!×𝛾!. If we consider “virtual 

locus” spanning the two loci, there will be 4 possible alleles. We can build the following 

multi-allelic frequency table,   

 Alleles at locus 1 and 2   Case   Control   OR 

Risk at both   𝑝!"!    𝑝!"! = 𝑝!!𝑝!!   𝛾!𝛾! 

Reference at 1, Risk at 2   𝑝!!
!    𝑝!!

! = (1 − 𝑝!!)𝑝!!   𝛾! 

Risk at 1, Reference at 2   𝑝!!
!    𝑝!!

! = 𝑝!!(1 − 𝑝!!)   𝛾! 

Reference at both   𝑝!!
!    𝑝!!

! = (1 − 𝑝!!)(1 − 𝑝!!)   1 

 

Note that the control allele frequency is simply multplication of the frequencies at the two 

loci (“Control” column in the table above), because these loci are uncorrelated in control 

individuals. Our goal is to prove that the case allele frequency can be similarly 

decomposed into the multiplication of the frequencies of the two loci. If that is the case, 

that will show that these loci are independent in the case individuals as well. Consider 

the reference allele frequency, 𝑝!!
! . By equation (2), we have  
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 𝑝!!
! = !

!!
!!!
!

!!!
! !!!

!!!
!

!!!
! !!!

!!"
!

!!!
! !!!!

 

 = !

!! !!
!(!!!!

!)
(!!!!

!)(!!!!
!)!!!

(!!!!
!)!!

!

(!!!!
!)(!!!!

!)!!!
!!
!!!

!

(!!!!
!)(!!!!

!)!!!!
 

 = (!!!!!)(!!!!!)
(!!!!!)(!!!!!)!!!!(!!!!!)!!!(!!!!!)!!!!!!!!!!!!!!!!

 

 = (!!!!!)(!!!!!)
((!!!!!)!!!!!!)((!!!!!)!!!!!!)

 

 = (1 − 𝑝!!)(1 − 𝑝!!) (4) 

Thus, the case allele frequency is also a multiplication of the frequencies of the two loci. 

The similar decomposition can be done for the other three alleles. For example, by 

equations (3) and (4),  

 𝑝!"! = 𝑝!"! 𝛾!𝛾!
!!!
!

!!!
!  

 = 𝑝!!𝑝!!𝛾!𝛾!
(!!!!!)(!!!!!)
(!!!!!)(!!!!!)

 

 = 𝛾!𝑝!!
(!!!!!)
(!!!!!)

𝛾!𝑝!!
(!!!!!)
(!!!!!)

 

 = 𝑝!!𝑝!! 

Since the frequency is the product of frequencies of each allele, the two loci are 

independent. Thus, we conclude that the loci that are independent in controls will also be 

independent in case individuals under the standard additive model. 

 

Subgroup heterogeneity induces positive correlations 

An equally important intuition is that if there is subgroup heterogeneity, the risk alleles at 

loci that are independent in control individuals will show positive correlations in case 

individuals. This fact sets the foundation stone for our alternative hypothesis of positive 

correlations.  
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Suppose that disease A (DA) case individuals consist of two groups: one group 

genetically similar to a second trait (disease B, DB) and the rest not similar to DB. Say (𝜋 

x 100)% of case individuals are in the DB-similar group. We will call 𝜋 the heterogeneity 

proportion. Consider two independent SNPs that are associated to the second trait. Let 

their risk allele frequencies be 𝑝!! and 𝑝!! in the DB-similar group and 𝑝!! and 𝑝!! in the 

rest. Note that the two loci are uncorrelated within each subgroup (the DB-similar group 

comprises individuals that are genetically cases for DB, and we have already shown that 

independent risk loci will be uncorrelated in case individuals under the standard additive 

model). 

 

If we consider frequencies of haplotypes spanning the two loci in the DA case individuals 

consisting of both subgroups,   

 Alleles at locus 1 and 2   Haplotype   Frequency 

Risk at both   𝑝!"   𝜋𝑝!!𝑝!! + (1 − 𝜋)𝑝!!𝑝!! 
Reference at 1, Risk at 2   𝑝!!   𝜋(1 − 𝑝!!)𝑝!! + (1 − 𝜋)(1 − 𝑝!!)𝑝!! 
Risk at 1, Reference at 2   𝑝!!   𝜋𝑝!!(1 − 𝑝!!) + (1 − 𝜋)𝑝!!(1 − 𝑝!!) 
Reference at both   𝑝!!   𝜋(1 − 𝑝!!)(1 − 𝑝!!) + (1 − 𝜋)(1 − 𝑝!!)(1 − 𝑝!!) 
  

The expected value of Pearson correlation is therefore  

 𝑟!" =
!!"!!!!!!!!!!
!!⋅!!⋅!⋅!!⋅!

 (5) 

where dot (⋅) in the subscript denotes marginal frequency, for example 𝑝!⋅ = 𝑝!" + 𝑝!!. A 

few interesting characteristics are, (1) 𝑟!"  is always positive or zero because we 

considered risk allele dosage at both loci. (2) 𝑟!" = 0 if 𝜋 = 0 or 𝜋 = 1. (3) 𝑟!" = 0 if risk 

is zero (𝑝!! = 𝑝! and 𝑝!! = 𝑝!). (4) 𝑟!" is a function of RAF, OR, and 𝜋 (but not of sample 

size). 𝑟!" is typically a very small value. Supplementary Figure 2 shows the value of 𝑟!" 
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as a function of OR at the two loci (when we fix 𝑝! and 𝑝! to 0.5) and the value of 𝑟!" as 

a function of 𝑝! and 𝑝! (when we fix OR to 1.5 at both loci).  

 

 

DERIVATION OF BUHMBOX 

Null and alternative hypotheses 

Building upon the aforementioned intuitions, we can build the BUHMBOX statistic to 

detect positive correlations between independent loci, which will be evidence of 

subgroup heterogeneity. Suppose that we examine DA case individuals at M 

independent DB-associated loci. Between these loci, we calculate correlations of risk 

allele dosages to obtain an 𝑀×𝑀  correlation matrix, 𝐑.  The null hypothesis of our 

method is that the non-diagonal elements of R are zero. The alternative hypothesis of 

our method is that the non-diagonal elements of R are positive. We build our method in 

the following steps.  

 

Combining correlations into one statistic 

The first challenge is to combine 𝑀(𝑀 − 1)/2  non-diagonal elements of 𝐑  into one 

statistic. To this end, we show that under the null hypothesis of no correlations, the non-

diagonal elements of the observed correlation matrix will be independent of each other. 

We employ the framework of Jennrich1. Jennrich describes a framework for testing 

deviance of a correlation matrix from a specified null matrix. To describe the framework 

briefly, let 𝐏 = (𝜌!")  be a specific 𝑀×𝑀  correlation matrix that defines the null 

hypothesis. The goal is to test if the observed sample correlation matrix 𝐑 deviates from 

𝐏. To define a statistic, what we need is the inverse of asymptotic covariance matrix for 
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the maximum likelihood estimates of 𝜌!" , which we call 𝚪!! . Note that 𝚪!!  is a 𝑞×𝑞 

matrix where 𝑞 = 𝑀(𝑀 − 1)/2. 

Let 𝐏!! = (𝜌!") . Let 𝛿!"  be the Kronecker delta, that is, 1 if 𝑖 = 𝑗  and zero 

otherwise. We define 𝐓 = (𝑡!") as the following,  

 𝑡!" = 𝛿!" + 𝜌!"𝜌!" (6) 

 Then, 𝚪!! is given by  

 𝚪!!(𝑖, 𝑗; 𝑘, 𝑙) = 𝜌!"𝜌!" + 𝜌!"𝜌!" − 𝜌!"(𝑡!" + 𝑡!" + 𝑡!" + 𝑡!")𝜌!" (7) 

 Given these, if we define  

 𝐘 = 𝑁(𝐑 − 𝐏) = (𝑦!") (8) 

 where 𝑁 is the number of samples used to calculate 𝑅, the test statistic is  

 𝑆!"##$%&! =   !!!   !!! 𝑦!"𝚪!!(𝑖, 𝑗; 𝑘, 𝑙)𝑦!" (9) 

which follows 𝜒! distribution with 𝑞 degrees of freedom under the null. The computation 

is challenging if 𝑝  is large because of the time complexity 𝑂(𝑞!) = 𝑂(𝑝!) . Jennrich 

applies an optimization technique to simplify the formula to  

 𝑆!"##$%&! =
!
!
𝑡𝑟(𝐘𝐏!!𝐘𝐏!!) − 𝑑𝑔′(𝐏!!𝐘)𝐓!!𝑑𝑔(𝐏!!𝐘) (10) 

 which only involves operations between 𝑀×𝑀 matrices requiring only 𝑂(𝑀!).  

In our situation, this statistic simplifies further. Our null hypothesis is no 

correlation. Thus, the identity matrix 𝐈 is our null correlation matrix (𝐏 = 𝐈). Substituting 𝐏 

with 𝐈, the statistic simplifies to  

 𝑆!"##$%&!|𝐏!𝐈 =
!
!
𝑡𝑟(𝐘𝐘) =   !!! 𝑦!"!  (11) 

 Note that each 𝑦!" asymptotically follows a normal distribution (thus, a z-score). The 

statistic can be interpreted as the following; under the specific situation 𝐏 = 𝐈, the z-

scores become asymptotically independent. Thus, we can combine information by 
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simply summing up their squares which will follow 𝜒!  distribution with 𝑞  degrees of 

freedom. 

 

OPTIMIZATION OF BUHMBOX 

Accounting for directions to increase power 

A straightforward application of Jennrich’s approach in equation (11) is not optimal for 

our situation, because Jennrich’s test is a general test that does not account for the 

direction of correlations. As we have described, subgroup heterogeneity only results in 

positive expected correlations between risk loci. Thus, accounting for this fact may give 

us better power. 

 

To this end, we employ the meta-analytic framework Wei2,3 and Lin and Sullivan4. This 

framework combines multiple estimates whose asymptotic covariance is known while 

accounting for their directions. Applying this approach, we obtain a new statistic that is 

alternative to equation (9),  

 𝑆!"#$%&"'()* =
  !!!   !!!!!"!!!(!,!;!,!)

  !!!   !!!!!!(!,!;!,!)
 

which follows 𝑁(0,1)  under the null hypothesis of 𝑅 = 𝑃 . To reduce computational 

complexity, we can apply the same optimization technique of Jennrich to simplify the 

statistic to  

 𝑆!"#$%&"'()* =
!
!!"(𝐘𝐏

!𝟏𝐄𝐏!𝟏)!!"′(𝐏!𝟏𝐘)𝐓!𝟏!"(𝐏!𝟏𝐄)

!
!!"(𝐄𝐏

!𝟏𝐄𝐏!𝟏)!!"′(𝐏!𝟏𝐄)𝐓!𝟏!"(𝐏!𝟏𝐄)
 

where 𝐄 is an 𝑀×𝑀 matrix whose elements are all ones. 

In our specific situation that 𝐏 = 𝐈, this statistic further simplifies to  

 𝑆!"#$%&"'()*|𝐏!𝐈 =
  !!!!!!
!

 (12) 
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which follows the standard normal distribution under the null hypothesis. We calculate 

significance of this statistic using the normal distribution in a positive one-sided test. 

 

Optimizing weights based on effect sizes and allele frequencies 

The directional test in equation (12) accounts for the directions of correlations, but does 

not account for the effect size and frequency differences between loci. As we have 

shown, expected correlation of two loci is a function of not only 𝜋 , heterogeneity 

proportion, but also the effect sizes and RAFs of the two loci. Thus, each pair of loci will 

have different expected correlations. When we combine correlations to one statistic, we 

can have better power by giving higher weights to the pairs of high expected 

correlations. 

 

Recall that the expected correlation is, as given in equation (5),  

 𝑟!" =
!!"!!!!!!!!!!
!!⋅!!⋅!⋅!!⋅!

 

We examine what is the increase in 𝑟!" given an increase in 𝜋 at the local region around 

the null hypothesis 𝜋 = 0.  

 𝑤!" =
!!!!
!!

|!!! =
!!(!!!!)!!(!!!!)(!!!!)(!!!!)
((!!!!)!!!!)((!!!!)!!!!)

 

The value 𝑤!" can be thought of as the slope of the curves evaluated at 𝜋 = 0. For any 

loci pair 𝑖 and 𝑗, we can calculate 𝑤!".  

Then what we need is an optimal strategy to incorporate 𝑤!" into our testing, so 

that our method can have the local optimum property at around 𝜋 = 0. That is, should we 

weight 𝑦!" by 𝑤!" or 𝑤!"? We note that our situation is analogous to a situation where in 

a meta-analysis, the effect sizes are the same for all participating studies but their units 

or scales are different, thus requiring different weights. We extended the traditional 



Han Pouget et al 

 
 
 

11 

meta-analysis method, fixed effects model (FE), to a new model which can deal with the 

situation that the scales are different between studies. We present the details in the end 

of Supplmentary Note. Briefly speaking of the conclusion, the optimal strategy is 

multiplying the scaling parameters directly into the weights of the sum of weighted z-

scores. 

Based on this reasoning, our statistic becomes  

 𝑆!"#$!%& =
  !!!!!"!!"

  !!!!!"
!

 (13) 

 which follows 𝑁(0,1) under the null hypothesis. We calculate the significance of this 

statistic uising the normal distribution assuming a positive one-sided test. 

 

Controlling for LD and utilizing control samples 

Because linkage disequilibrium (LD) can induce unexpected correlations between loci, 

one should prune the loci before applying BUHMBOX. We suggest a harsh criterion (e.g. 

removing SNPs that are 𝑟! < 0.1 or that are nearby (within ±1Mb) to other SNPs). 

However, even after harsh pruning, there can be residual LD that can affect the results. 

To minimize the effect of residual LD, BUHMBOX uses control samples. 

 

Recall that when we defined the z-scores based on correlations in case samples, we 

used the formula in equation (8),  

 𝐘 = 𝑁(𝐑 − 𝐏) = (𝑦!") 

which means that we should multiply the correlation elements by square root of sample 

size to obtain z-scores. Now if we use control samples, and let 𝐑′ be the correlation 

matrix of control individuals, we can define a new 𝐘′ as  

 𝐘′ = !!′
!!!′

(𝐑 − 𝐑′) 
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where 𝑁′ is the control sample size. 

 

Although the basic form of our approach is case-only statistic, using only cases requires 

a strong assumption of no residual LD. By subtracting control correlations from case 

correlations to use “delta-correlations”, we obtain a more robust statistic against the 

effect of LD. 

 

Controlling for population stratification 

We correct for population stratification by regressing out PCs from the vector of 

case/control allele dosage of each locus. Note that we regress out PCs from each locus 

one by one, not simultaneously from the whole dosage matrix including multiple loci. 

This way, our approach can be thought of as obtaining partial correlations. 

 

Meta-analysis of BUHMBOX results 

The BUHMBOX statistic is a z-score. Therefore, we can meta-analyze BUHMBOX 

results using the standard weighted sum of z-score approach, where z-scores are 

weighted by the square root of the total sample size.  

 

POLYGENIC MODELING AND BUHMBOX 

We assessed by simulations whether our method can benefit by taking advantage of a 

polygenic modeling approach. In GWAS, the use of a stringent threshold (P-value 

threshold t=5x10-8) minimizes false positives, but likely misses true positives due to 

imperfect power. Therefore, investigators often use a polygenic modeling approach that 

applies a more liberal threshold to define a larger set of variants5. We simulated GWASs 
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based on the Bayesian polygenic model6 and employed more liberal values of t ranging 

from 5x10-8 up to 0.01, to obtain larger sets of variants.  

 

Specifically, We adapted Stahl et al.’s Bayesian polygenic model6, which predicted 2,231 

causal loci among 84,000 independent genome-wide loci for RA. To simulate 2,231 

causal variants, we combined 71 independent known loci of RA7 to an additional 2,160 

loci sampled from the joint posterior distribution of RAF and OR presented in Stahl et al. 

For null loci, we also used the null RAF distribution presented in Stahl et al. Given this 

disease model, we simulated a GWAS with 3,964 cases and 12,052 controls (sample 

sizes from Stahl et al.), assuming prevalence of 0.01. Given GWAS results, we used 

only the top k GWAS loci defined by p-value threshold t and their observed odds ratios 

for BUHMBOX power simulations. We assumed N=5,000 and π=0.5 for power 

evaluation and tried different p-value threshold t from 5x10-8 to 0.01. 

 

We observed that the statistical power of BUHMBOX increased when we included 

variants with moderately significant p-values (Supplementary Figure 4). In this 

simulation, 29.5% power at t=5.0x10-8 increased up to 88.1% at t=3.6x10-4 and then 

gradually dropped as we used even more liberal t values. This shows that BUHMBOX 

can benefit from polygenic modeling.  
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INTERPRETATION OF BUHMBOX RESULTS:  

Here we sought to describe in detail what can specifically cause subgroup 

heterogeneity. 

 

Misclassifications can cause subgroup heterogeneity 

Phenotypic misclassifications can cause subgroup heterogeneity. Suppose that a 

proportion of diagnosed case individuals were actually case individuals for a different 

disease. In this situation, the heterogeneity proportion 𝜋  corresponds to the 

misclassification proportion. 

 

Molecular subtypes can cause subgroup heterogeneity 

 Suppose that disease A can occur because of multiple different molecular 

pathways, and one of the pathways is shared with disease B. Then, the subgroup that 

shares a molecular pathway with disease B will show genetic characteristics that are 

similar to disease B patients.  

 

Phenotypic causality can cause subgroup heterogeneity 

 This is a situation that is often called “mediated pleiotropy”8. Assume that there 

are two conditions A and B whose population prevalences are 𝐾! and 𝐾!. First, consider 

the null situation that A and B are not causal to each other. Obviously, B-associated loci 

will be uncorrelated within A cases. Within A cases, the prevalence of B will be 𝐾!. 
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Now consider the situation that B causes A (having condition B increases the 

chance of acquiring A). Let 𝐾!|! and 𝐾!|! be the frequency of A among B patients and 

among non-B-patients. The population attributable risk of A to B is  

 PAR = 𝐾!|! − 𝐾!|! > 0 

The population prevalence of A can be written  

 𝐾! = 𝐾!𝐾!|! + (1 − 𝐾!)𝐾!|! 

Thus, within A cases, the proportion of individuals having B will be  

 𝐾!|! =
!!!!|!
!!

= !!!!|!
!!!!|!!(!!!!)!!|!

> 𝐹! 

In this situation, the heterogeneity proportion 𝜋 corresponds to the excessive proportion 

of individuals having B among A cases, that would not have occurred without the causal 

relationship;  

 𝜋 = 𝐾!|! − 𝐾! 

which has the following relationship to PAR  

 𝜋 = !!(!!!!)
!!

    PAR 

 

Whole-group pleiotropy cannot cause subgroup heterogeneity 

Common genetic basis between all patients of A and all patients of B (whole-

group pleiotropy) does not cause subgroup heterogeneity. If disease A and B share risk 

alleles, within A cases, the frequencies of risk alleles for B may increase. However, there 

will not be a subgroup who has excessivie numbers of risk alleles. Instead, the risk 

alleles will occur independently and homogeneously across all A cases even if only a 

subset of variants have pleiotropic effects. Thus, there will not be correlations among B-

associated-risk alleles among A cases. Note that the prevalence of B may increase 
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(𝐾!|! > 𝐾!), but we can think of A cases being sampled from a new homogeneous 

population which has a larger prevalence of B. 

 

Inverse causal relationship cannot cause subgroup heterogeneity 

We previously considered the causal relationship of disease B causing A, but 

now consider the inverse situation that A causes B, while B does not cause A. Again we 

examine the correlations between B-associated loci in A cases. This is a similar situation 

to pleiotropy in that we can also think of A cases being sampled from a new population 

which has a larger prevalence of B. Since there will not be a subgroup, there will not be 

correlations. 

 

META-ANALYSIS WITH SCALE DIFFERENCES 

In deriving the strategy to incorporate weights in equation (13), our BUHMBOX 

method utilized a meta-analytic framework that accounts for the scale or unit differences 

between studies. Because the description of the framework is long, we pushed the 

description back to here. We will first introduce the well-known meta-analytic method, 

fixed effects model, and extend it to account for scale differences. 

 

Fixed effects model 

We first review the fixed effects model meta-analysis method. Let 𝑋! be the observed 

effect size of study 𝑖 and 𝑉! be the variance of it. By definition, z-score is defined 𝑍! =

!!
!!

. Let 𝑊! = 𝑉!!! be the inverse variance. Under the fixed effects model, we assume 

that 𝑋! has mean 𝜇 that is constant (fixed) across the studies. There are two common 



Han Pouget et al 

 
 
 

17 

approaches under the fixed effects model: the inverse variance weighted average and 

the weighted sum of z-scores. Two approaches are related as shown below. 

Inverse variance weighted average In the inverse variance weighted average 

approach, the goal is to obtain the best estimate of 𝜇. A commonly used estimate is 

weighted average, 𝑋! =
  ! !!!!
  ! !!

, which is an unbiased estimate of 𝜇 for any 𝑐! > 0. The 

variance of 𝑋! is 𝑉! =
  ! !!
!!!

(   ! !!)!
. To obtain the best estimate, we choose 𝑐! that minimizes the 

variance. By the Cauchy-Schwarz inequality,  

 𝑉! =
  ! !!
!!!

(   ! !!)!
≥   !

!! !!
  ! !!
× !

!!
/   !

!
!!
= 1/   !

!
!!

 

The equality is achieved when  

 !! !!
  ! !!
= 𝑘 ⋅ !

!!
 

for a constant 𝑘 > 0. Without losing generality, we can assume   ! 𝑐! is a constant. Thus, 

we can achieve the equality by choosing 𝑐! = 𝑊!, which is why the method is called 

inverse variance weighted average. Given these weights, the average estimate and its 

variance are 

 

 𝑋 =   !!!!!
  !!!

 (15) 

 𝑉 = !
  !!!

 (16) 

 

Weighted sum of z-scores In the weighted sum of z-scores approach, the goal 

is to maximize the power of statistic. Given z-scores 𝑍! =
!!
!!

, we can define a weighted 

sum of z-scores statistic 𝑍 =   !!!!!

  !!!
!
. 𝑍  is also a z-score (normally distributed and of 
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variance 1) for any weights 𝑏! > 0. To maximize power, we want to maximize the non-

centrality parameter of 𝑍, 𝐸[𝑍]. Since in each study 𝐸[𝑍!] =
!
!!

 , we have 

 

 𝐸[𝑍] =   !!!!/ !!

  !!!
!

 

Again, by the Cauchy-Schwarz inequality, 

 

 𝐸[𝑍] = 𝜇 ⋅   !
!!

  !!!
!
⋅ !

!!
≤ 𝜇   !

!!
!

  !!!
!   !

!
!!

 

The equality is achieved when 

 

 !!

  !!!
!
= 𝑘 ⋅ !

!!
 

for a constant 𝑘 > 0. Without losing generality, we can assume   ! 𝑏!! is a constant. 

Thus, we can achieve the equality by choosing 𝑏! = 1/ 𝑉! = 𝑊!. Given these weights, 

the weighted sum of z-scores statistic is 

 

 𝑍 =   ! !!!!
  !!!

 (17) 

 

Note that in many applications, we can approximate 𝑊! ∝ 𝑁!𝑝!(1 − 𝑝!) where 

𝑁!  is the sample size of study 𝑖 and 𝑝!  is the allele frequency in study 𝑖. If we can 

assume the allele frequencies are the same for all studies, the weights 𝑏! approximates 

to 𝑁!, which is the widely used sample-size-based weight for this approach. 
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Relation of two approaches The two approaches, the inverse weighted average 

and the weighted sum of z-scores, are closely related. Given the inverse variance 

weighted average and its variance in equations (15) and (16), one can construct a z-

score for statistical testing. The z-score is 

 

 𝑍∗ = 𝑋/ 𝑉 =   !!!!!
  !!!

/ !
  !!!
=   ! !!!!

  !!!
= 𝑍 

, exactly resulting in the same z-score in the weighted sum of z-scores approach in 

equation (17). Thus, although the goals of the two approaches were different (obtaining 

the best estimate and maximizing power), the results of statistical test will be exactly the 

same for the two approaches, or at least similar if we use the approximation 𝑊! ∝

𝑁!𝑝!(1 − 𝑝!) or 𝑊! ∝ 𝑁!. 

 

Fixed effects model with scale differences 

We extend the fixed effects model (FE) to a new model accounting for scale differences. 

We use the similar notations; let 𝑋! and 𝑉! = 𝑊!
!! be the observed effect size and its 

variance in study 𝑖. In the new model, we assume that there is a baseline effect 𝜇 which 

is manifested in different scales for each study. We assume that in study 𝑖, 𝑋! has mean 

𝜇! = 𝜌!𝜇, where 𝜌! is a scaling factor that is known a priori. Under this model, we can 

also propose the inverse variance weighted average and the weighted sum of z-score 

approaches. 

Inverse variance weighted average In this approach, our goal is to obtain the 

best estimate of 𝜇. In each study, we can define 𝑌!!
!!
!!

, an estimator of 𝜇. The variance of 

𝑌! is 𝑉𝑎𝑟(𝑌!) = 𝑉!/𝜌!!. We can define the weighted average estimate for 𝜇, 
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 𝑌 =   ! !!!!
  ! !!

 

Using Cauchy-Schwarz inequality, we can show that the variance of 𝑌 is minimum when 

𝑐! =
!

!"#(!!)
= !!

!

!!
. Given these weights, the average estimate and its variance are 

 

 𝑌 =   !!!!!!!
  !!!
!!!

 (18) 

 𝑉𝑎𝑟(𝑌) = !
  !!!
!!!

 (19) 

 

Weighted sum of z-scores Given z-scores 𝑍! =
!!

!"#(!!)
= !!

!!
, we can construct 

a weighted sum of z-scores statistic, 𝑍 =   !!!!!

  !!!
!
. Since in each study 𝐸[𝑍!] =

!!!
!!

 , we 

have 

 

 𝐸[𝑍] =   !!!!!!/ !!

  !!!
!

 

Again, by the Cauchy-Schwarz inequality, 

 

 𝐸[𝑍] = 𝜇 ⋅   !
!!

  !!!
!
⋅ !!

!!
≤ 𝜇   !

!!
!

  !!!
!   !

!!
!

!!
 

The equality is achieved when 

 

 !!

  !!!
!
= 𝑘 ⋅ !!

!!
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for a constant 𝑘 > 0. Thus, we can achieve the equality by choosing 𝑏! = 𝜌!/ 𝑉! =

𝜌! 𝑊!. In other words, the scaling factor 𝜌! is directly multiplied to the original z-score 

weights used in FE. Given these weights, the weighted sum of z-scores statistic is 

 

 𝑍 =   !!! !!!!

  !!!
!!!

 (20) 

 

Relation of two approaches The two approaches, the inverse weighted average 

and the weighted sum of z-scores, have close relation in the new model, as they have 

close relation in FE. Given the inverse variance weighted average and its variance in 

equations (18) and (19), one can construct a z-score for statistical testing. The z-score is 

 

 𝑍∗ = 𝑌/ 𝑉𝑎𝑟(𝑌) =   !!!!!!!
  !!!
!!!

/ !

  !!!
!!!

=   !!! !!!!

  !!!
!!!

= 𝑍 

, exactly resulting in the same z-score in the weighted sum of z-scores approach in 

equation (20). Thus, the results of statistical test will be the same for the two 

approaches, or similar if we use the approximation 𝑊! ∝ 𝑁!𝑝!(1 − 𝑝!) or 𝑊! ∝ 𝑁!.  
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Supplementary Tables 

 

Supplementary Table 1. Null and alternative hypotheses of GRS and BUHMBOX 

 

GRS approach 
Subgroup Heterogeneity 

No Yes 

Whole-group 

Pleiotropy 

No Null hypothesis Alternative hypothesis 

Yes Alternative hypothesis Alternative hypothesis 

 

BUHMBOX 
Subgroup Heterogeneity 

No Yes 

Whole-group 

Pleiotropy 

No Null hypothesis Alternative hypothesis 

Yes Null hypothesis Alternative hypothesis 
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Supplementary Table 2. False positive rate of BUHMBOX 

We simulated a million null studies assuming sample size N=2,000 and number of risk 

loci M=50. Then given threshold α, the false positive rate was estimated as the 

proportion of simulated studies with p-value ≤ α. 

 

True threshold α  False positive rate 

0.05 0.051 

0.01 0.011 

0.005 0.0056 

0.001 0.0012 

0.0005 0.00060 
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Supplementary Table 3. Detailed SNP information used for GRS and BUHMBOX 

analyses 

Please refer to separate Excel file. 

 

 

 

Supplementary Table 4. GRS and BUHMBOX results 
Please refer to separate Excel file. 
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Supplementary Table 5. MDD sample description 

Full dataset (used for BUHMBOX analysis) 

Study Tag N Total N Cases 

Genetic Association Information Network (GAIN)-
MDD1 

gain 3,461 1,694 

Genetics of Recurrent Early-Onset Depression2 genred 2,283 1,030 
Glaxo-Smith-Kline (GSK)3 gsk 1,751 887 
MDD20004  mdd2kb 1,184 433 

mdd2ks 1,977 1,017 
Max Planck Institute of Psychiatry, Munich5 munich 913 376 
RADIANT-GERMANY6 and Bonn/Mannheim7 radbon 2,225 935 
RADIANT-UK6 raduk 3,213 1,625 
Sequenced Treatment Alternatives to Relieve 
Depression (STARD)8 

stardfull 1,752 1,241 

 Total 16,759 9,238 
 

Schizophrenia-GWAS-independent dataset (used for GRS analysis) 

Study Tag N Controls N Cases 
Genetic Association Information Network (GAIN)-MDD1 gain 1,682 1,693 
MDD20004  mdd2kb 751 433 

mdd2ks 960 1,016 
Max Planck Institute of Psychiatry, Munich5 munich 537 375 
RADIANT-UK6 raduk 1,583 1,624 
Sequenced Treatment Alternatives to Relieve 
Depression (STARD)8  

stardfull 101 1,241 

 Total 5,614 6,382 
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Supplementary Table 6. Summary of selected previous estimates of genetic 
overlap between MDD and SCZ 

Study Method MDD results BPD Results 

Cross-Disorder 
Group of the PGC9 

Polygenic risk 
scoring, pT=1  
(all SNPs) 

R2=0.009, p<1x10-16 R2=0.025, p<1x10-50 

Cross-Disorder 
Group of the PGC10 

REML rg=0.43, SE=0.06, 
p<1.0x10-16 

rg=0.68, SE=0.04, 
p=6.0 x10-15 

Bulik-Sullivan et al.11 LDSR rg=0.51, SE= 0.08, 
p=1.32x10-11 

rg=0.79, SE=0.04, 
p=7.45x10-94 

 
1. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five 

major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371-1379 (2013). 
2. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric 

disorders estimated from genome-wide SNPs. Nat Genet 45, 984-994 (2013). 
3. Bulik-Sullivan B. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47,1236-1241 

(2015). 
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Danish Radiant Ole Mors Aarhus University Hospital, Risskov Research Department P Aarhus 

Central 
Denmark 
Region  DK 

Danish replication Henriette N Buttenschøn Aarhus University 

Department of Clinical Medicine, 
Translational Neuropsychiatry 
Unit Aarhus 

 
DK 

Danish replication Ole Mors Aarhus University Hospital, Risskov Research Department P Aarhus 
Central 
Denmark DK 
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Region  

Danish replication Anders D Børglum 

iPSYCH, Lundbeck Foundation 
Initiative for Integrative Psychiatric 
Research 

 
Aarhus 

 
DK 

Danish replication Anders D Børglum Aarhus University 

iSEQ, Centre for Integrative 
Sequencing, Department of 
Biomedicine Aarhus 

 
DK 

Danish replication Jakob Grove 

iPSYCH, Lundbeck Foundation 
Initiative for Integrative Psychiatric 
Research 

 
Aarhus 

 
DK 

Danish replication Jakob Grove Aarhus University 
iSEQ, Centre for Integrative 
Sequencing Aarhus 

 
DK 

Danish replication Jakob Grove Aarhus University 
Bioinformatics Research Centre 
(BiRC) Aarhus 

 
DK 

Danish replication Jakob Grove Aarhus University Department of Biomedicine Aarhus 
 

DK 

Danish replication Jesper Krogh University of Copenhagen 
Deparment of Endocrinology at 
Herlev University Hospital Copenhagen DK 

Roche MDD Enrico Domenici F. Hoffmann-La Roche Ltd 

Roche Pharmaceutical Research 
and Early Development, 
Neuroscience, Ophthalmology 
and Rare Diseases Discovery & 
Translational Medicine Area, 
Roche Innovation Center Basel Basel 

 
CH 

Roche MDD Daniel Umbricht F. Hoffmann-La Roche Ltd 

Roche Pharmaceutical Research 
and Early Development, 
Neuroscience, Ophthalmology 
and Rare Diseases Discovery & 
Translational Medicine Area, 
Roche Innovation Center Basel  Basel 

 
CH 

Roche MDD Jorge A Quiroz F. Hoffmann-La Roche Ltd 

Roche Pharmaceutical Research 
and Early Development, 
Neuroscience, Ophthalmology 
and Rare Diseases Discovery & 
Translational Medicine Area, 
Roche Innovation Center Basel  Basel 

 
CH 

Roche MDD Carsten Horn F. Hoffmann-La Roche Ltd 

Roche Pharmaceutical Research 
and Early Development, 
Pharmaceutical Sciences, 
Roche Innovation Center Basel Basel 

 
CH 

QIMR Enda M Byrne The University of Queensland Queensland Brain Institute Brisbane QLD AU 

QIMR Baptiste Couvy-Duchesne 
QIMR Berghofer Medical Research 
Institute 

Genetics and Computational 
Biology Herston QLD AU 

QIMR Baptiste Couvy-Duchesne The University of Queensland Centre for Advanced Imaging Saint Lucia QLD AU 

QIMR Baptiste Couvy-Duchesne The University of Queensland School of Psychology Saint Lucia QLD AU 

QIMR Scott D Gordon 
QIMR Berghofer Medical Research 
Institute 

Genetics and Computational 
Biology Brisbane Queensland AU 

QIMR Andrew C Heath 
Washington University in Saint 
Louis School of Medicine Psychiatry Saint Louis MO US 

QIMR Anjali K Henders The University of Queensland Queensland Brain Institute Brisbane QLD AU 

QIMR IB Hickie University of Sydney 
Brain and Mind Research 
Institute Sydney NSW AU 

QIMR Pamela AF Madden 
Washington University in Saint 
Louis School of Medicine Department of Psychiatry Saint Louis MO US 

QIMR Nicholas G Martin The University of Queensland School of Psychology Brisbane QLD AU 

QIMR Nicholas G Martin 
QIMR Berghofer Medical Research 
Institute 

Genetics and Computational 
Biology Brisbane Queensland AU 

QIMR Sarah Elizabeth Medland 
QIMR Berghofer Medical Research 
Institute 

Genetics and Computational 
Biology Herston QLD AU 

QIMR Grant W Montgomery 
QIMR Berghofer Medical Research 
Institute 

Genetics and Computational 
Biology Brisbane QLD AU 

QIMR Dale R Nyholt 
Queensland University of 
Technology 

Institute of Health and 
Biomedical Innovation Brisbane QLD AU 

QIMR Michele L Pergadia Florida Atlantic University 
Charles E. Schmidt College of 
Medicine Boca Raton FL US 

QIMR Divya Mehta The University of Queensland Queensland Brain Institute Brisbane QLD AU 

QIMR Naomi R Wray The University of Queensland Queensland Brain Institute Brisbane QLD AU 

PsyColaus Martin Preisig University Hospital of Lausanne Department of Psychiatry Prilly Vaud CH 

PsyColaus Enrique Castelao University Hospital of Lausanne  Department of Psychiatry Prilly Vaud CH 

PsyColaus Zoltán Kutalik University Hospital of Lausanne 
Institute of Social and Preventive 
Medicine (IUMSP) Lausanne VD CH 
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PsyColaus Zoltán Kutalik Swiss Institute of Bioinformatics 
 

Lausanne VD CH 

STAR*D Steven P Hamilton 
Kaiser Permanente Northern 
California Psychiatry 

San 
Francisco CA US 

GenPod/Newmeds Katherine E Tansey University of Bristol 
MRC Integrative Epidemiology 
Unit Bristol Bristol GB 

GenPod/Newmeds Rudolf Uher Dalhousie University Psychiatry Halifax NS CA 

GenPod/Newmeds Glyn Lewis University College London Division of Psychiatry London 
 

GB 

GenPod/Newmeds Michael C O'Donovan Cardiff University 

MRC Centre for 
Neuropsychiatric Genetics and 
Genomics Cardiff Cardiff GB 

NESDA Brenda WJH Penninx 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam 

 
NL 

NESDA Yuri Milaneschi 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam 

 
NL 

NESDA Wouter J Peyrot 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam 

 
NL 

NESDA Johannes H Smit 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam 

 
NL 

NESDA Rick Jansen 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam 

 
NL 

NESDA Aartjan TF Beekman 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam 

 
NL 

NESDA Robert Schoevers 
University of Groningen, University 
Medical Center Groningen Department of Psychiatry Groningen Groningen NL 

NESDA Albert M van Hemert Leiden University Medical Center Department of Psychiatry Leiden 
 

NL 

NESDA Gerard van Grootheest 
VU University Medical Center and 
GGZ inGeest Department of Psychiatry Amsterdam Noord-Holland NL 

NTR Dorret I Boomsma VU University Amsterdam Dept of Biological Psychology Amsterdam 
 

NL 

NTR Jouke- Jan Hottenga VU University Amsterdam Dept of Biological Psychology Amsterdam 
 

NL 

NTR Christel M Middeldorp VU University Amsterdam Dept of Biological Psychology Amsterdam 
 

NL 

NTR EJC de Geus VU University Medical Center EMGO+ Institute Amsterdam 
 

NL 

NTR EJC de Geus VU University Amsterdam Dept of Biological Psychology Amsterdam 
 

NL 

NTR Abdel Abdellaoui VU University Amsterdam Dept of Biological Psychology Amsterdam 
 

NL 

NTR Gonneke Willemsen VU University Amsterdam Dept of Biological Psychology Amsterdam 
 

NL 

Harvard Erin C Dunn Broad Institute 
Stanley Center for Psychiatric 
Research Cambridge MA US 

Harvard Erin C Dunn Massachusetts General Hospital Department of Psychiatry Boston MA US 

Harvard Erin C Dunn Massachusetts General Hospital 

Psychiatric and 
Neurodevelopmental Genetics 
Unit (PNGU) Boston MA US 

Harvard Roy H Perlis Harvard Medical School Psychiatry Boston MA US 

Harvard Roy H Perlis Massachusetts General Hospital Psychiatry Boston MA US 

Harvard Jordan W Smoller Massachusetts General Hospital Department of Psychiatry Boston MA US 

Harvard Jordan W Smoller Massachusetts General Hospital 

Psychiatric and 
Neurodevelopmental Genetics 
Unit (PNGU) Boston MA US 

Harvard Jordan W Smoller Broad Institute 
Stanley Center for Psychiatric 
Research Cambridge MA US 

TwinGene Patrik K Magnusson Karolinska Institutet 
Department of Medical 
Epidemiology and Biostatistics Stockholm 

 
SE 

TwinGene Nancy L Pedersen Karolinska Institutet 
Department of Medical 
Epidemiology and Biostatistics Stockholm 

 
SE 

TwinGene Alexander Viktorin Karolinska Institutet 
The Department of Medical 
Epidemiology and Biostatistics Stockholm Stockholm SE 

TwinGene Erik Pettersson Karolinska Institutet 
Medical Epidemiology and 
Biostatistics Stockholm 

 
SE 

DK Control Thomas Werge 
The Lundbeck Foundation Initiative 
for Psychiatric Research iPSYCH  Copenhagen DK 

DK Control Thomas Werge University of Copenhagen Institute of Clinical Medicine  Copenhagen DK 

DK Control Thomas Werge 
Mental Health Services Capital 
Region of Denmark 

Institute of Biological Psychiatry, 
Mental Health Center Sct. Hans Copenhagen DK 

DK Control Thomas Hansen 
Mental Health Services Capital 
Region of Denmark 

Institute of Biological Psychiatry, 
Mental Health Center Sct. Hans Copenhagen DK 

DK Control Thomas Hansen 
The Lundbeck Foundation Initiative 
for Psychiatric Research iPSYCH Copenhagen DK 
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Pfizer Sara A Paciga 
Pfizer Global Research and 
Development 

Human Genetics and 
Computational Biomedicine Groton CT US 

Pfizer Hualin S Xi 
Pfizer Global Research and 
Development 

Computational Sciences Center 
of Emphasis Cambridge MA US 

Pfizer Ashley R Winslow 
Pfizer Global Research and 
Development 

Human Genetics and 
Computational Medicine Cambridge MA US 

GenRED, GenRED2, DGN Douglas F Levinson Stanford University 
Psychiatry & Behavioral 
Sciences Stanford CA US 

GenRED, GenRED2, DGN Myrna M Weissman 
New York State Psychiatric 
Institute Division of Epidemiology New York NY US 

GenRED, GenRED2, DGN Myrna M Weissman 
Columbia University College of 
Physicians and Surgeons Psychiatry New York NY US 

GenRED, GenRED2, DGN James B Potash University of Iowa Psychiatry Iowa City IA US 

GenRED, GenRED2, DGN Jianxin Shi National Cancer Institute 
Division of Cancer Epidemiology 
and Genetics Bethesda MD US 

GenRED, GenRED2 James A Knowles University of Southern California 
Psychiatry & The Behavioral 
Sciences Los Angeles CA US 


