Supplemental Information for Cahoon et al. Supplemental Figures

Figure S1: PrsA1 monomers exhibit different conformations of the PPlase (A) Electron density of residues 228 to 234 in monomer B contoured at 1 rmsd or 0.19 e/Å³. (B) Monomer A (green) and monomer B (gold) were aligned in Coot relative to the Foldase domain (residues 22-125 and 238-282) with an RMS of 1.021 Å². The PPlase of monomer B is shifted by approximately 8 Å compared to monomer A.

Figure S2: Molecular surface comparison of *B. subtilis* PrsA and *Lm* PrsA1 (A) The dimeric PrsA structure (PDB accession code 4WO7) was used to calculate surface charge by APBS. (B) Electrostatic surface potential of the *Lm* PrsA1 foldase domain pocket generated by APBS. The contour is -5 to 5 kT/e. The 'Arm' regions of the Foldase domain are also outlined. (C) The hydrophobic character of *B. subtilis* NC or foldase domain. The hydrophobic patch on the arm domain is highlighted. Hydrophobic residues (A, G, I, L, M, F, V) are colored in yellow, aromatic residues (Y, W, but not F) in orange.

Figure S3: Surface residue conservation of the Lm PrsA1 and PrsA2 molecular chaperones. (A) Conserved surface residues of the PrsA chaperone family mapped to the *Lm* PrsA1 structure as determined by Consurf. Homologus residues are pink and dark pink and strictly conserved in red. (B) Surface residues that differ between *Lm* PrsA1 and *Lm* PrsA2 are shown in blue (C) A 90° rotation from Figure 3A is shown to display the surface opposite the PPlase active site. A patch of residue difference between PrsA1 (purple) and PrsA2 (black) is shown. (D) Consurf server output of the Lm PrsA1 foldase pocket showing conserved residues from 89 PrsA sequences. Blue represents no convervation (random residue), white neutral, and pink to dark red increasing conservation with dark red as absolution conservation. (E) Non-homologous sequence differences between *Lm* PrsA1 and *Lm* PrsA2 foldase are highlighted in red. Left panel is looking down into the Foldase domain from the PPlase domain(s). The right panel is a 90° rotation and zoom of the outer face of the 'Arm' region displaying a highly charged patch of residues that differ between *Lm* PrsA1 and *Lm* PrsA2. The PrsA1 residues are listed.

Figure S4: Annotated sequence alignment of *Lm* **PrsA1 and** *Lm* **PrsA2** The alignment was generated using ClustalW and annotated with secondary structural elements using Espript3 (http://espript.ibcp.fr/ESPript/ESPript/). Areas of sequence identity are outlined by red boxes and sequence homology by red letters. Secondary structure elements are represented by spirals (α -helix) and arrows (β -sheet). Solvent accessible and buried residues are indicated by blue (solvent exposed), cyan (solvent accessible), and white (buried) boxes. Residues that were mutated are indicated by colored circle with a black outline showing residues that were studied individually.

Figure S5: PPlase variant control assay Gel-filtration profile of the PrsA1 PPlase variant (D185A/E191K). Dimerized PrsA1 elutes at ~ 49 mL and monomeric PrsA1 at ~ 55 mL. The left inset shows the purified variant PrsA1 separated by SDS-PAGE gel visualized by Coomassie stain. The right inset shows the circular dichroism spectra of PrsA1 wild-type and the PPlase variant plotted as mean residue ellipticity.

Table S1. Strains and Designations

Strain or	Description	Designation	Reference
Plasmid			
TOP10	<i>E. coli</i> propagation strain		Invitrogen
S17-1	<i>E. coli</i> conjugation strain		
SM10	E. coli conjugation strain		
BL21 (DE3)*	<i>E. coli</i> protein expression strain		Invitrogen
DH5a l/q	<i>E. coli</i> protein expression strain		NEB
NF-L100	<i>L. monocytogenes</i> 10403S parent strain	wt	(Bishop & Hinrichs, 1987)
NF-L1651	10403S with <i>∆prsA2</i> :: <i>erm</i>	$\Delta prsA2$	(Alonzo <i>et</i> <i>al.</i> , 2009)
NF-L1631	NF-L1438 ($\Delta prsA1$) transduced with $\Delta prsA2$:: <i>erm</i>	$\Delta prsA2/\Delta prsA1$	(Alonzo & Freitag, 2010)
NF-L3790	NF-L1651 with integrated pPL2- <i>prsA2</i> wild-type	prsA2 wt complement	This work
NF-L3792	NF-L1651 with integrated pPL2-prsA2 A185D/K191E	PPlase A185D/K191E	This work
NF-L3794	NF-L1651 with integrated pPL2-prsA2 K268A/K29A	Membrane K268A/K29A	This work
NF-L3796	NF-L1651 with integrated pPL2-prsA2 K268A/K29A/C21S	Membrane K268A/K29A/C21S	This work
NF-L3798	NF-L1651 with integrated pPL2-prsA2 C21S	Membrane C21S	This work
NF-L3800	NF-L1651 with integrated pPL2- <i>prsA2</i> F281A	Foldase F281A	This work
NF-L3802	NF-L1651 with integrated pPL2- <i>prsA2</i> F281A/Y80A/Y84A	Foldase F281A/Y80A/Y84A	This work
NF-L3804	NF-L1651 with integrated pPL2- <i>prsA2</i> V90T	Foldase V90T	This work
NF-L3806	NF-L1651 with integrated pPL2- <i>prsA2</i> V28A/L40A/Y41A/M44A	Dimer V28A/L40A/Y41A/M44A	This work
NF-L3808	NF-L1651 with integrated pPL2-prsA2 V28A/L40A/Y41A	Dimer V28A/L40A/Y41A	This work
NF-L3810	NF-L1651 with integrated pPL2- <i>prsA2</i> V28A/L40A	Dimer V28A/L40A	This work
NF-L3812	NF-L1651 with integrated	Dimer V28A	This work

	pPL2-prsA2 V28A		
NF-L3814	NF-L1631 with integrated	prsA1 wt complement	This work
	pPL2-prsA1 wild-type		
NF-L3816	NF-L1631 with integrated	PPlase D185A/E191K	This work
	pPL2- <i>prsA1</i> D185A/E191K		
NF-L3818	NF-L1631 with integrated	Membrane	This work
	pPL2- <i>prsA1</i> K270E/K29A	K270E/K29A	
NF-L3820	NF-L1631 with integrated	Membrane	This work
	pPL2-prsA1	K270E/K29A/C21S	
	K270E/K29A/C21S	Marshaara 0040	This wards
NF-L3822	NF-L1631 With Integrated	Membrane C21S	I his work
	pPL2-prsAT C215		This work
NF-L3023	nF-L 1031 with integrated	Foldase 1201A	This work
NE 1 3824	NE L 1631 with integrated	Foldase	This work
NF-LJOZ4	$nPl 2_nrs A1$		THIS WORK
	Y281A/Y80A/Y84A		
NF-I 3826	NF-I 1631 with integrated	Foldase T91V	This work
	pPL2-prsA1 T91V		
NF-L3828	NF-L1631 with integrated	Dimer	This work
	pPL2-prsA1	V28A/L40A/Y41A/M44A	
	V28A/L40A/Y41A/M44A		
NF-L3830	NF-L1631 with integrated	Dimer I28A/L40A/Y41A	This work
	pPL2- <i>prsA1</i> V28A/L40A/Y41A		
NF-L3832	NF-L1631 with integrated	Dimer I28A/L40A	This work
	pPL2- <i>prsA1</i> V28A/L40A		
NF-L3834	NF-L1631 with integrated	Dimer I28A	This work
	pPL2-prsA1 V28A		
pQE60	C-terminal His-tagged		Qiagen
	expression strain		
PNF-1965	pQE60-prsA1		(Alonzo et
		wild two	<i>al.</i> , 2011)
pNF-1764	pQE60-prsA2	wild-type	(Alonzo et
DNE 4027	pOE60 proA1	dimor variant	al., 2011)
pNr-4037	PQE00-prsAT		THIS WORK
nPI 2	Integrative vector for single		(Lauer et al
	conv gene complementation in		(Lauci <i>et al.</i> , 2002)
	I m		2002)
pNF-3838	pPL2-prsA2 (containing the		This work
F	open reading from of prsA2		
	including 580 bp upstream and		
	68 bp downstream region)		
pNF-3840	pPL2-prsA2 A185D/K191É		This work
pNF-3842	pPL2-prsA2 K268A/K29A		This work
pNF-3844	pPL2-prsA2		This work

	K268A/K29A/C21S	
pNF-3846	pPL2-prsA2 C21S	This work
pNF-3848	pPL2-prsA2 F281A	This work
pNF-3850	pPL2-prsA2	This work
	F281A/Y80A/Y84A	
pNF-3852	pPL2-prsA2 V90T	This work
pNF-3854	pPL2-prsA2	This work
	V28A/L40A/Y41A/M44A	
pNF-3855	pPL2- <i>prsA2</i> V28A/L40A/Y41A	This work
pNF-3856	pPL2- <i>prsA2</i> V28A/L40A	This work
pNF-3858	pPL2-prsA2 V28A	This work
pNF-3860	pPL2-prsA1 (containing the	This work
	open reading from of prsA1	
	including 95 bp upstream and	
	66 bp downstream region)	
pNF-3862	pPL2- <i>prsA1</i> D185A/E191K	This work
pNF-3864	pPL2- <i>prsA1</i> K270E/K29A	This work
pNF-3866	pPL2- <i>prsA1</i>	This work
	K270E/K29A/C21S	
pNF-3867	pPL2-prsA1 C21S	This work
pNF-3868	pPL2- <i>prsA1</i> Y281A	This work
pNF-3870	pPL2- <i>prsA1</i>	This work
	Y281A/Y80A/Y84A	
pNF-3872	pPL2-prsA1 T91V	This work
pNF-3874	pPL2- <i>prsA1</i>	This work
	V28A/L40A/Y41A/M44A	
pNF-3876	pPL2-prsA1 V28A/L40A/Y41A	This work
pNF-3878	pPL2-prsA1 V28A/L40A	This work
pNF-3880	pPL2-prsA1 V28A	This work

Table S2. Oligonucleotides used in this study.

Oligonucleotide	Sequence	Use
prsA2UPSacF1	5'AGTAGAGCTCggctagctgccgtatgtatt	Forward primer for amplification
		of and complementation with of
		prsA2
prsA2XmaR1	5'GCG <mark>CCCGGG</mark> TTCGTTTTATAATC	Reverse primer for amplification of
		and complementation with of
		prsA2
prsA1UPSacF1	5'AGTA <mark>GAGCTC</mark> GACGGGCACAAATTCGAAGT	Forward primer for amplification
		of and complementation with of
		prsA1
prsA1XmaR2	5'AGTACCCGGGGCGTGTGTTTTTGACGGGAA	Reverse primer for amplification of
		and complementation with of
		prsA1

LmPrsA2F1	5'ATCGAAAGTGCAGAACGTGG	Sequencing of <i>prsA2</i>
LmPrsA2F1RC	5'CCACGTTCTGCACTTTCGAT	Sequencing of <i>prsA2</i>
LmPrsA2F2	5'CTGACACTAGCGACAAAACAC	Sequencing of <i>prsA2</i>
LmPrsA2F2RC	5'GTGTTTTGTCGCTAGTGTCAG	Sequencing of <i>prsA2</i>
LmPrsA1F1	5'CCAGATATTACTGTTCGCC	Sequencing of prsA1
LmPrsA1F1RC	5'GGCGAACAGTAATATCTGG	Sequencing of <i>prsA1</i>
prsA1-D185A	5'CAAAAAAATCTTAGAAGcTAAATACACCGTAACAG	Site directed mutagenesis
prsA1-D185Arc	5'CTGTTACGGTGTATTTAgCTTCTAAGATTTTTTG	Site directed mutagenesis
prsA1-E191K	5'TAAATACACCGTAACAaAAAAAGAAGTAAATGC	Site directed mutagenesis
prsA1-E191Krc	5'GCATTTACTTCTTTTtTGTTACGGTGTATTTA	Site directed mutagenesis
prsA1-I28A	5'GGAAGTAGCGCTGTTgcAAAAACAGATGCAGG	Site directed mutagenesis
prsA1-I28Arc	5'CCTGCATCTGTTTTTgcAACAGCGCTACTTCC	Site directed mutagenesis
prsA1-L40A	5'GTCACACAAGATGAGgcTTACGAAGCAATGAAAA CG	Site directed mutagenesis
prsA1-L40Arc	5'CGTTTTCATTGCTTCGTAAgcCTCATCTTGTGTGA C	Site directed mutagenesis
prsA1-Y41A	5'CACACAAGATGAGgcTgcCGAAGCAATGAAAACGA	Site directed mutagenesis ,
	C	contains mutation L40A in
		addition to Y41A
prsA1-Y41Arc	5'GTCGTTTTCATTGCTTCGgcAgcCTCATCTTGTGT	Site directed mutagenesis,
	G	contains mutation L40A in
		addition to Y41A
prsA1-M44A	5'GAGgcTgcCGAAGCAgcGAAAACGACTTATGGAAA	Site directed mutagenesis,
	TG	contains mutations L40A and
		Y41A in addition to M44A
prsA1-M44Arc	5'CATITULATAAGTUGTIIIUgCIGUIIUGCAGCUI	Site directed mutagenesis,
		Contains mutations L40A and $V41A$ in addition to $M44A$
$nre \Lambda 1_{K} 270F$	Γ΄ Γ	Site directed mutagenesis
proA1_K270E		Site directed mutagenesis
prsA1-K2/UErc		Site directed mutagenesis
prsA1-K29A	5'GTAGCGCTGTTATAgcAACAGATGCAGG	Site directed mutagenesis
prsA1-K29Arc	5'CCTGCATCTGTTgcTATAACAGLGUTAL	Site directed mutagenesis
prsA1-0215	5'CTGCTCGCTGGTTCTGGAAGTAGLGL	Site directed mutagenesis
prsA1-C21Src	5'GCGCTACTTCCAgAACCAGCGAGCAG	Site directed mutagenesis
prsA1-Y281A	5'GATGCATTTTGCAGATgcCACAAGTACATCCTCAAC	Site directed mutagenesis
prsA1-Y281YArc	5'GTTGAGGATGTACTTGTGgcATCTGCAAATGCAT C	Site directed mutagenesis
prsA1-Y80A	5'CAGAATATAAGAAAgcTGAAGAACAATACG	Site directed mutagenesis
prsA1-Y80Arc	5'CGTATTGTTCTTCAgcTTTCTTATATTCTG	Site directed mutagenesis
prsA1-Y84A	5'GAAAgcTGAAGAACAAgcCGGTGACTCATTTG	Site directed mutagenesis, contains
		mutation Y80A in addition to Y84A
prsA1-Y84Arc	5'CAAATGAGTCACCGgcTTGTTCTTCAgcTTTL	Site directed mutagenesis, contains
		mutation Y80A in addition to Y84A
prsA1-190v	T	Site directed mutagenesis
prsA1-T90Vrc	5'AATTATTAGAGGATAACacTGATTCAAATGAGTC AC	Site directed mutagenesis
prsA2-A185D	5'GTGGACAATTAGaTCCATTCGGTCC	Site directed mutagenesis

prsA2-A185Drc	5'GGACCGAATGGAtCTAATTGTCCAC	Site directed mutagenesis
prsA2-K191E	5'CATTCGGTCCTGGTgAAATGGATCCAGC	Site directed mutagenesis
prsA2-K191Erc	5'GCTGGATCCATTTcACCAGGACCGAATG	Site directed mutagenesis
prsA2-V28A	5'GTGGCGGCGGAGATGTCGcTAAGACAGACTCTGG CG	Site directed mutagenesis
prsA2-V28Arc	5'CGCCAGAGTCTGTCTTAgCGACATCTCCGCCGCCA C	Site directed mutagenesis
prsA2-L40A	5'GTAACAAAAGACGAAgcTTATGACGCAATGAAAG	Site directed mutagenesis
prsA2-L40Arc	5'CTTTCATTGCGTCATAAgcTTCGTCTTTGTTAC	Site directed mutagenesis
prsA2-Y41A	5'CAAAAGACGAAgcTgcTGACGCAATGAAAG	Site directed mutagenesis, contains mutation L40A in addition to Y41A
prsA2-Y41Arc	5'CTTTCATTGCGTCAgcAgcTTCGTCTTTTG	Site directed mutagenesis, contains mutation L40A in addition to Y41A
prsA2-M44A	5'GAAgcTgcTGACGCAgcGAAAGATAAATATG	Site directed mutagenesis, contains mutations L40A and Y41A in addition to M44A
prsA2-M44Arc	5'CATATTTATCTTTCgcTGCGTCAgcAgcTTC	Site directed mutagenesis, contains mutations L40A and Y41A in addition to M44A
prsA2-K268A	5'CAAAGATGCTAACGTGgcAGTGGAAGACAAAGAC	Site directed mutagenesis
prsA2-K268Arc	5'GTCTTTGTCTTCCACTgcCACGTTAGCATCTTTG	Site directed mutagenesis
prsA2-K29A	5'GGAGATGTCGTTgcGACAGACTCTGG	Site directed mutagenesis
prsA2-K29Arc	5'CCAGAGTCTGTCgcAACGACATCTCC	Site directed mutagenesis
prsA2-C21S	5'GGCATTGTTCAGTCTAGCAGCGTcCGGTGGCGGCG GAGATGTCG	Site directed mutagenesis
prsA2-C21Src	5'CGACATCTCCGCCGCCACCGgACGCTGCTAGACTG AACAATGCC	Site directed mutagenesis
prsA2-F281A	5'GATGCTTTTAAAGATgcTGATGGTTCTTCATCCAG	Site directed mutagenesis
prsA2-F281Arc	5'CTGGATGAAGAACCATCAgcATCTTTAAAAGCAT C	Site directed mutagenesis
prsA2-Y80A	5'CAAGAAATTCAACGAGgcTAAATCACAATACGGA G	Site directed mutagenesis
prsA2-Y80Arc	5'CTCCGTATTGTGATTTAgcCTCGTTGAATTTCTTG	Site directed mutagenesis
prsA2-84YtoA	5'CGAGgcTAAATCACAAgcCGGAGATCAATTCTCTG	Site directed mutagenesis,
	C	contains mutation Y80A in addition to Y84A
prsA2-Y84Arc	5'GCAGAGAATTGATCTCCGgcTTGTGATTTAgcCTC	Site directed mutagenesis,
	G	contains mutation Y80A in
$nrs \Delta 2 V 9 0 T$		Site directed mutagenesis
prsA2-V90Trc	5'GCCACTTTGAGCTAAAgtTGCAGAGAATTGATCTC	Site directed mutagenesis

References for Tables

- Alonzo, F., 3rd & N. E. Freitag, (2010) Listeria monocytogenes PrsA2 is required for virulence factor secretion and bacterial viability within the host cell cytosol. *Infection and immunity* **78**: 4944-4957.
- Alonzo, F., 3rd, G. C. Port, M. Cao & N. E. Freitag, (2009) The posttranslocation chaperone PrsA2 contributes to multiple facets of Listeria monocytogenes pathogenesis. *Infection and immunity* **77**: 2612-2623.
- Alonzo, F., 3rd, B. Xayarath, J. C. Whisstock & N. E. Freitag, (2011) Functional analysis of the Listeria monocytogenes secretion chaperone PrsA2 and its multiple contributions to bacterial virulence. *Molecular microbiology* **80**: 1530-1548.
- Bishop, D. K. & D. J. Hinrichs, (1987) Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. *J Immunol* **139**: 2005-2009.
- Lauer, P., M. Y. Chow, M. J. Loessner, D. A. Portnoy & R. Calendar, (2002) Construction, characterization, and use of two Listeria monocytogenes sitespecific phage integration vectors. *Journal of bacteriology* **184**: 4177-4186.