Supplementary Information

(Supplementary Table S1, Supplementary Figures S1 to S9)

Expression and purification of the modification-dependent restriction enzyme BisI and its homologous enzymes

Shuang-yong Xu^{1*}, Pernelle Klein^{1#}, Sergey Kh. Degtyarev², Richard Roberts^{1*}

1. New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA

2. SibEnzyme Ltd. 2/12 Ak. Timakov Street, Novosibirsk 630117, Russia

*Corresponding authors: Email: <u>xus@neb.com</u> Telephone: 1-978-380-7287 Fax: 1-978-921-1350 Or Email: <u>roberts@neb.com</u> Telephone: 1-978-380-7405 Fax: 1-978-921-1350

Current address:

École supérieure de biothechnologie Strasbourg (ESBS), Université de Strasbourg 300 boulevard Sébastien Brant, CS 10413, F-67412 Illkirch. France.

Clone isolate	GenBank accession #	Bacterial strain (genome)	Protein size, aa seq identity to BisI	Activity on plasmid Fnu4HIM ⁺ (2-3 ^{m5} C)	Activity on phage XP12 (^{m5} C)	Additional comment
VH4- BceV	EOO35066	Bacillus cereus VDM019	212 aa (44%) (M ₅₈ start codon)	Low activity	??	Poor protein yield (N- terminal 6xHis tag)
XU-Sme	AGA08338	Sinorhizobium melliloti GR4	169 (36.1%)	No	No	Low protein yield
XU-Psp	EJM90208	Pseudomonas sp. GM67	192 (31.2%)	Low activity	??	Protein made
XU-Bvi	ABO60211	Burkholderia vietnamiensis G4	174 (22.5%)	No	No	Low protein yield
XU-Hde	EHB76573 (ATG start codon)	Hyphomicrobium denitrificans 1NES1	183 (22.4%)	Low activity	??	Protein made
PK6	EHB76573 (TTG start codon)	Hyphomicrobium denitrificans 1NES1	172 (20.7%)	No	No	Protein made
XU-Tsu	AEB13592	Treponema succinifaciens DSM 2489	236 aa (20.5%,N- terminus)	No	No	Protein made
PK10	WP_029989486	Microbacterium paraoxydans	196 aa (18.6%)	No	No	Poor protein yield

Supplementary Ta	able S1. A l	list of low	activity or	inactive Bi	sI homologs
------------------	--------------	-------------	-------------	-------------	-------------

Proteins listed in descending order based on amino acid sequence identity to BisI. ??, not tested for restriction activity on phage XP12 DNA substrate.

Supplementary Figure S1.

SDS-PAGE analysis of partially purified BisI homologs and restriction activity assays on plasmid and phage XP12 DNA substrates.

- A. SDS-PAGE analysis of partially purified BisI homolog enzymes (see Tables 1 to 3 for the list). Lanes 1-13, PK #1 to #13 clones (1-CbuDI, 2-KasKI, 3-MbaR4I, 4-AlaI, 5-Dsp20I, 6-PK6, 7-Sde240I, 8-SqiI, 9-PK10, 10-MspAK21I, 11-AspTB23I, 12-LsaM18I, 13-Esp638I). The stars denote the over-expressed and partially purified target proteins.
- B. and C. Restriction activity assays on pUC19-Fnu4HIM and phage XP12 DNA, respectively. Lanes 1-13, input enzymes are numbered as in A. Note: in lanes 3 (MbaR4I), 8 (SqiI), and 13 (Esp638I), strong endonuclease activity was detected on phage XP12 DNA only; poor activity (linear or partial nicking) was detected on the modified plasmid substrate. "--", uncut DNA.

Phage XP12 DNA (m5C)

Supplementary Figure S2

Digestion of modified duplex oligos (containing two to four ^{m5}C) by BisI homologs MbaR4I (PK#3), SqiI (PK#9), Esp638I (PK#14), and other enzymes.

- A. MbaR4I, SqiI, and Esp638I digested duplex oligos with four, three, or two modified bases ^{m5}C. The substrate (Sub) and product (P1, denoted by a "*") were detected by FAM fluorescence imaging.
- B. MbaR4I, SqiI, and Esp638I digested duplex oligos (left panel, four ^{m5}C; right panel, three ^{m5}C) analyzed on a 20% PAG gel. DNA bands were stained by SYBR Gold and detected by fluorescence imaging. "*" indicates the cleavage products P1 (20 bp) and P2 (14 bp). 5 bp, DNA size markers.
- C. Hemi-methylated duplex oligos (two ^{m5}C on top strand only, unmodified bottom strand) digested by BisI homolog enzymes. "*", cleavage product P1 as detected by FAM fluorescence imaging. After restriction digestion, 10 U of *E. coli* Exonuclease I was added to degrade any ssDNA.

Supplementary Figure S3.

PROMALS3D (http://prodata.swmed.edu/promals3d) multiple sequence alignment for BisI, Bce95I, BceYI-like enzymes (cleavage of two to four ^{m5}C in GCNGC). The sequences in the box are predicted to form a typical REase fold ($\alpha\beta\beta\beta\alpha\beta$, the second β strand may be replaced by an α -helix) that contain 3-4 catalytic residues D, E, and K for metal ion (2-3 Mg²⁺) binding and catalysis. The conserved aa sequence E(or D)LGE----IDAI---RYSIKXT---TG(or S)VF-GL(V or M)---Q-FE(or D)Y-IIV or variants of this sequence can be found in BisI/Bce95I/BstYI-like enzymes and over 30 hypothetical proteins in sequenced bacterial genomes. Numbers (6 to 9) on top of the aa sequences show the propensity of conservation. "*", predicted catalytic residue candidates.

		E/D E	
Conservation:		9 5 6 5 9 779 9 799 975967995779 9 6 97 95 5	
Vsp586I	1	MIAAYGDLITELKRREIIRTKNVVGDLGERFAIDFYTONPSLESLYDA	48
BisI	1	MTVSLKKLDDLELTLLYSSLLKELKORGIIRTNNVVGELGEYLAINFYNKTKGLPKLOAA	60
BceYI	1	MTKDIKKMLNEMNENDLIGVYRLWIDELKARGMIRTDNVVGELGEYLAIKYYKKNPSLPKLQAT	64
BspUNI	1	MAQNIIDKLKDMNDYDLIAVYGVWLDELKTRGMIRTNNVIGELGEYLAIKYYRENPKLPKLQAA	64
BspFJI	1	MNYDIEEIFSQLDDLHLVDVYGKWLVELKKRNIIRTNNVVGELGEYLAINYYTKTSGLPRLQAA	64
BsuMP111	1	MTVSLENLDDLELTLLYSKLLKELKCRGIIRTNNVVGELGEYLTINFYNKTKGLPKLQAA	60
Rf117I	1	MTDLSKLSDGEIISMYSSIIKELKSRKIIRTKNVLGELGEYLAIQYYNNTPGLPKLQVA	59
Bce95I	1	MKELICMSSEVEYTNMTIAEGLEEYSKLMKMFKKRGATRTNNFVGDMGETLAIEHYNANDSLPNLSMV	68
Consensus_aa:		Mshpphshl.hYt.hlpELK.R.hIRTpNVlG-LGEhLAIp@YppsstLPpLphh	
Consensus ss:		e hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	
		D K E/D	
Conservation:		7 776 99965 7 79699 55 97795955 5 7 979 75759 5 5 996 9	
Vsp586I	49	PTSTKSIDALGEFGNKYAIRSITGNLTGVFYGLPHKDSLEIPEKLFDYLLVVLFSDT QVRAIYELTWEQ	118
BisI	61	PTGTQNIDALSIKGDRYSIKTTTGSVTGVFYGMNDPEIREPDIQKFEYVIIVLFDKE\$SLKGIYELSWES	130
BceYI	65	PPGTQSIDAISIKGDRYAIKTVTSKTTSAFYGLNEPNSAIEEKQIFEYVIIVVFNKDITIKAIYEMNWEN	134
BspUNI	65	PTGTQNIDAISINGDRYSIKSTTGKITGVFYGLNEPDSKIGDKQKFEYVIIVVFNKD TLNSIYELTWEN	134
BspFJI	65	PTGTQNIDAISIQGERYSIKATTGNSTGVFYGLNDPDDPSEDQQKFEYVILVLFNKD TLKSIYEIDWNA	134
BsuMP111	61	PTGTQNIDALSIKGDRYSIKTTTGNVTGVFYGLNDPEVTDPDVQKFEYVIIVLFDKE*ALKGIYELSWDS	130
Rf117I	60	PVGTKNIDAISRDGDRYSIKATSNNTTGVFTGVDFDKDGNPLKQYFEYIIICQFNDD#QLLNIYQIDWKS	129
Bce95I	69	DVGMKHIDAIDENNARYSIKATRTKMTGVFNGLNDPDSDMPQEQLFEYAIIVLFDEDVSLQAIYQLDWHS	138
Consensus_aa:		PhGTpsIDAltbpGsRYtIKshosphTGVFhGlscscspQbFEYlIlVlFsc-hplptIYplsWcs	
Consensus_ss:		eeeeeeeee eee hhhhhhheeeeeee eeee hhh	
Conservation:		96579 9757555977 6 7 6 6	
Vsp5861	119	FLTHKKWHSRMEAWNISVSKKVKSEARTVFEIIT152	
BISI	131	FIRHKRWHKRMRAWNLTITKALLSDSEIIFEKESKLLN 168	
BCeYI	135	PLKHKHWHSKVRAWNLSVSKAVLEDCIRIF 164	
BSPUNI	135	PLKHKKWHSKMKAWNLSISKALLKDCIKIF	
BSPFJI	135	FLKHKKWHSKMKAWNLPVNKSLLKDAEPVFVNNGTTASVRKIQVLPMEITLSTE 188	
BSUMP111	131	FIKHKRWHKRMRAWNLSITKSLIADSKVIHEKFVKEVDKDE 171	
RIII/I	130	FIKHKHWHSKMKSWNLTITKELINESVIIKQKSSSCHF 167	
BC6321	139	PLSLKKWNTSKKTWILTISNELKKKSQIIYEQ 170	
Consensus_aa:		F1pHK+WHOR/1+UWNLO10K.1Dp-U.10.	
Consensus_ss:		nnnnnnn eeeehhhhhhhhhhhhh	

Supplementary Figure S4.

PROMALS3D multiple sequence alignment for NhoI, MbaR4I, SqiI-like enzymes (required three to four ^{m5}C in GCNGC for efficient cleavage). The aa sequences in the box are predicted to form the typical REase fold ($\alpha\beta\beta\beta\alpha\beta$) that contains the putative catalytic residues D or E, D-X₁₀-QxK for metal ion (2-3 Mg²⁺) binding and catalysis (a variant of PD-ExK, Mrr-like catalytic site). "*", predicted catalytic residue candidates.

Conservation: Pan13I Pru454I NhoI Dsp20_I SqiI MbaR4I Consensus_aa: Consensus_ss:	1 1 1 1	9 6 696 99 966 96 969 	34 42 44 35 35 69
Conservation: Pan13I Pru454I NhoI Dsp20_I SqiI MbaR4I Consensus_aa: Consensus_ss:	35 43 45 36 36 70	DE <u>66669</u> 6 6 6 6 6 9 <u>9</u> 6 <u>969</u> 9 6 6 9 99 6 VSÉYTÉWLVSNRMGMVLAPASTKGYDAITSGGRKVQIKSRKNNAKNKSMIL-GIRNYELNQFDDLIA VGDYAEWLVSQAFGMKLLNNSYPGVDAIDVDDQKVQIKARRITPDSPSKQL-SALRNYDAIEFDYLIA AGDYAEULVQRATDGELANASQKSWDIRTTEGDRLQVKARVITDEHANGERQL-STIRSWDFDAAVI TGDLAEYLFCTAFGWKQAPNSERGFDATGQDGVRYQIKGRRVHRRNPSRQL-SAIRDLAGGHFDVLAG TGDLAEHLFCAAFGWAQAPNSERGYDATGPDGTRFQIKGRRVHRRNPSRQL-SAIRDLAGGHFDVLAG LGDYAEHMALSVYGGSLAQNSAKSYDLTADDGRTIQVKARTVSASTSPSAVFSVFRSFDFDVATL hGDhAE@Lh.phhGbAssS.+t@Dhhss-Gp+hQlKtRplp.c.ssspbL.ShlRscFDhhh. hhhhhhhhhhhhh	101 109 110 102 102 134
Conservation: Pan13I Pru454I NhoI Dsp20_I Sq1I MbaR4I Consensus_aa: Consensus_ss:	102 110 111 103 103 135	6 6 9 6 9 6 6 9 6 VIYHP-DFSIRYALQIPHELVKIYGRFNQHQNGYTLSMTAKLLSDRRVVDITQCFLV 157 VIFDT-HYNVIEAYKIPHIVIGDYAKFSKHTNAHLITLKGDILLDERVLDIKEKIILITKSLHSQ 173 VLFDD-NFRVWRAARVPAAIMKEAAYYSQHVRGYTVYAKDALLNHSEVEDWTEQLRSVEQ 169 VIFDD-DFRVVRAALIPRGVVEKRSTFVAHTNSHKFLLRDDVWEAQGVQDVTVEVAAAMP 161 VIFDD-DFCVVRAALIPRGVVEARSTYVAHTNSHKFILREDVWSAAGVRDVTAEVAAAMP 161 LVFDSRTYALKWAREMSPDQVREASRWSAHVRGHLLSIKVAQKAGTDVTELFMGFN 190 VIFDs s0.1AhblPllctp0s.Hhpt0.h.h+sslhp.V.DlT.bhhsh 190	

Supplementary Figure S5.

Esp638I digestion of M.CviPI-modified pBR322 and phage XP12 DNAs and a summary of Esp638I recognition sequences and cut sites.

- A. Esp638I digestion of pBRFM, pBRFM+ (additionally modified by M.CviPI),
 M.CviPI-modified pBR322, pBR322, and phage XP12 DNAs.
- B. A list of Esp638I recognition sequences and cut sites determined by run-off sequencing of Esp638I-digested, M.CviPI-premodified pBR322 DNA.
- C. Consensus recognition sequence (GCN↓NGC or RCN↓NGY) derived from cloned phage XP12 DNA fragments as compiled by Weblogo.

Supplementary Figure S6.

DNA run-off sequencing of Esp638I-digested pBR322 DNA, M.SssI-modified (left sequence panel), M.CviPI-modified (right sequence panel). Both the forward and reverse strands were shown as compared to undigested templates. GCAGC (indicated by a green bar) was not cut by Esp638I.

Supplement Figure S7.

PROMALS3D multiple sequence alignment for Esp638I-related enzymes (with 50% to 90% aa sequence identity to Esp638I). The function and specificity of these homologous enzymes remain to be analyzed. The sequences in the box are predicted to form the typical REase fold ($\alpha\beta\beta\beta\alpha\beta$) that contains the catalytic residues E-X₁₉₋₂₂-D-X₁₂-QxK for metal ion (2-3 Mg²⁺) binding (a variant of the PD-D/ExK catalytic site). The bacterial sources and GenBank accession numbers are: Esp638I (WP_015960106), WP_058676714 (*Enterobacter hormaechei*), WP_049016189 (*Citrobacter koseri*), WP_001592532 (*Enterobacteriaceae* sp.), WP_032723186 (*Enterobacter aerogenes*)), WP_040219152 (*Klebsiella pneumonia*), WP_058702817 (*Pantoea stewartii*), EGH79119 (*Pseudomonas syringae* pv. aptata str. DSM 50252), WP_043042189 (*Pseudomonas aeruginosa*), WP_039487727 (*Pectobacterium carotovorum*). "*", predicted catalytic residue candidates (E---D---Q-K).

...PGSKtRNERspltIspFKtItpbRW.....

hhhhhhh hhhhhhhhhhhh

h

Consensus aa:

Consensus ss:

Supplementary Figure S8.

Star activity or altered specificities of three BisI family enzymes Bth171I, Bce1273I, and Sve396I in digestion of pBR322 (M.Dcm⁺) and DNA run-off sequencing of Bce1273I-digested pBR322.

- A. Agarose gel analysis of cleavage products (1 μg of pBR322) digested by 1 or 5 μg of REase as indicated above each lane. "--", uncut DNA, 2-log, 2-log DNA ladder.
- B. Bce1273I cut sites derived from run-off sequencing and the consensus recognition sequence (RG↓NCY, relaxed sites RS↓NSY) compiled by Weblogo.
- C. Two examples of run-off sequence of Bce1273I cut sites (AG \downarrow TCC and AG \downarrow TCT) were shown.

Supplementary Figure S9.

Run-off sequencing of Bth171I-digested pBR322 (M.Dcm⁺) plasmid and the consensus sequence compiled by Weblogo.

- A. Four examples of run-off sequence of Bth171I cut sites (GG \downarrow CCT, GC \downarrow CCT, AG \downarrow CCT, and AC \downarrow CCT).
- B. Bth171I cut sites compiled by Weblogo to generate a consensus sequence RS↓NSY.
 The top five sites were digested completely (complete run-off) and the rest of the sites were partially digested to give partial run-off traces.

