
1 
 

Network Modeling Identifies Patient-specific Pathways in 

Glioblastoma 

 

Nurcan Tuncbag1, Pamela Milani1, Jenny L. Pokorny2, Hannah Johnson1,3, 

Terence T Sio2, Simona Dalin1, Dennis O Iyekegbe2, Forest M. White1,3, Jann N. 

Sarkaria2, and Ernest Fraenkel1,* 

 

1 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 

Massachusetts, 02139, USA 
2 Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA 
3 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 

Cambridge, Massachusetts 02139  USA 

*Correspondence should be addressed to (fraenkel-admin@mit.edu) 

 

Supplementary Information 

SI Text 

Collection of data from published studies for GBM xenograft models from the same center 

that made the models. 

Temozolomide, one of the chemical agents used in GBM therapy, methylates the DNA at O-6 

position of guanine which damages DNA and eventually induces tumor cell death. Resistance to 

the temozolomide therapy has been shown to be modulated by the DNA repair protein O-6-

methylguanine-DNA methyltransferase (MGMT) which removes the methyl groups that TMZ 

added; consequently, expression of MGMT induces resistance to TMZ therapy. We included 

TMZ response data based on TMZ therapy of 66 mg/kg daily for 5 days. At the end of the TMZ 

therapy, if the survival ratio is either larger than two-folds or the survival ratio p-value is less 

than 10
-4

, that tumor line is labeled TMZ sensitive in our data matrix. Also, expression of 

MGMT and the status of two other biomarkers (TP53 mutation and PTEN mutation/deletion) 

were added to the data for 20 tumor lines (1). The response to a mTOR pathway inhibitor, 

RAD001, has been tested for 17 tumor lines. GBM10 and GMB22 were found to be sensitive to 

RAD001 (2). Another biomarker, MARCKS protein, has been found to be regulator of growth 

and radiation sensitivity. MARCKS expression is available for only eight tumor lines (3). 

Clinical data such as, response to the radiotherapy treatment, patient age and gender have been 

also included in our data set for 15 tumor lines (4). Treatment with Erlotinib, an EGFR inhibitor, 

in 12 tumor lines showed that Erlotinib is only effective for GBM10 (5). The relationship 
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between invasiveness of the tumor and the level of E-cad expression has been analyzed 

extensively for 15 tumor lines previously, which is also included in our data matrix (6). 

In addition to this prior knowledge about the tumor lines, we also analyzed phosphoproteomic 

data to try to identify common signaling patterns between subsets of tumor lines. The 

phosphoproteomic data illustrates the heterogeneity between xenograft models of eight different 

patients (7). When we clustered proteins based on their phosphorylation ratios, we noticed that 

each cluster is enriched in very general biological processes (Fig S2b) implying that hits 

identified in the experimental data are not complete enough to represent disease-specific 

pathways. 

Xenograft heterogeneity is visually obvious in Figure S2a, and it is clear that response to the 

treatments is not correlated with any single biomarker, except for the above noted TMZ-MGMT 

relation. For example, although EGFR is mutated or amplified in half of the patient set, only one 

tumor line is sensitive to the EGFR inhibitor (Everolimus) and EGFR gene is neither mutated nor 

amplified in that tumor line. These observations indicate that there may be a combinatorial effect 

of several biomarkers in the progression of GBM. The global and phosphoproteomic data 

illustrate that expression and phosphorylation profiles of proteins in different tumor lines are 

heterogeneous as well (see reference (7) and Figure S2b). 

Prize Collecting Steiner Tree Problem. For a given, directed or undirected network G(V, E, 

c(e), p(v)) of node set V and edge set E, where a p(v) ≥ 0 assigns a prize to each node v ∈ V and  

c(e) ≥ 0 that assigns a cost to each edge e ∈ E. The aim is to find a tree T(VT,ET), by minimizing 

the objective function: 

 

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where the first term is β times the sum of the node prizes not included in the tree T and the 

second part is the sum of the edge costs of T. Note that 
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so that minimizing f(T) amounts to collecting the largest set of high prize vertices while 

minimizing the set of large cost edges in a trade-off tuned by β.  As a starting point, we consider 

the message-passing algorithm for the PCST problem introduced in (8). The message-passing 

algorithm estimates overall costs shifts for conditioning each edge to belong to the optimum 

PCST from the solution of a set of equations, information which is sufficient to construct a 

global optimum. These equations are solved iteratively in a computationally efficient way. Here 

we present a generalization of the message passing algorithm designed to solve the PCST 

problem on directed networks (i.e. where in general c(e{i,j}) might be different from c({j,i})). In 

this variant, the optimization will be done on directed rooted trees, where choice of the root 

(which will be part of the candidate tree) is an external parameter of the algorithm.  
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Table S1 List of the most common proteins in the disease networks. 

Protein Function 
Frequency in 

Disease 
Networks 

Average Specificity 
Index (standard 

deviation) 

TOLLIP 
is an inhibitory adaptor protein within Toll-like 
receptors. 

8 0.945 (0.013) 

MAP2K1 
Dual specificity protein kinase which acts as 
an essential component of the MAP kinase 
signal transduction pathway. 

8 0.905 (0.021) 

IRAK1 
responsible for Interleukin-induced up-
regulation of the transcription factor NF-
kappa B. 

8 0.904 (0.019) 

CDH1 

epithelial cadherin (E-cadherin) there is a 
correlation between the abnormal expression 
of E-cadherin and the growth and migration 
of this aggressive brain tumor subtype. 

8 0.804 (0.043) 

CRKL 
Increased levels of Crk mRNA are frequently 
observed in WHO grade III and IV malignant 
gliomas 

8 0.801 (0.034) 

LCK 

the non-receptor tyrosine kinase LCK is 
critically involved in fractionated radiation-
induced expansion of the glioma-initiating cell 
population and decreased cellular sensitivity 
to anticancer treatments. 

7 0.894 (0.025) 

ERBB3 
Multiple Erbb family receptors play role in 
GBM. 

7 0.874 (0.037) 

IKBKE 
IKBKE is over-expressed in glioma and 
contributes to resistance of glioma cells to 
apoptosis via activating NF-κB. 

7 0.946 (0.025) 

ARIH2 E3 ubiquitin-protein ligase 7 0.924 (0.026) 

UBE2L3 Ubiquitin-conjugating enzyme E2. 7 0.804 (0.014) 

STAT6 
Has a role in enhancing cell proliferation and 
invasion in GBM 

6 0.997 (0.005) 

BTRC 

plays important roles in regulating cell cycle 
checkpoints, and has also emerged as an 
important player in protein translation, cell 
grow and survival. 

6 0.73 (0.054) 
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Figure S1. RPPA data of phosphorylated proteins in TCGA those have a subtype assignment 

from transcriptional data.   
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Gender ( Male/Female) 
 

- 
      

- - - 
 

- 
      

- - 

Age(40-50/ 51-60/61-70/71+) 
 

- 
      

- - - 
 

- 
      

- - 

 
      

 
                                

Invasiveness 
              

- 
   

- 
 

Recurrence - 
    

- 
 

- - 
 

- - - - 
 

- - - - 
 

 

Response to Treatment  

Radiotherapy  - 
      

- 
 

- 
 

- 
      

- 
 

Erlotinib  - 
  

- 
   

- 
     

- 
 

- 
 

- - - 

RAD001 (TOR pathway inhibitor) - 
                 

- - 

TMZ 
                    

TMZ/RT compared to RT mono-therapy 
                    

SAHA - - - - 
 

- - - - - - - - - - - - - - - 

GNE-317 - 
   

- - - - - - - - - - - - - - - 
 

CDK4/6 inhibitor 
  

- - - - - - 
 

- 
  

- - - 
 

- - - - 

 

Protein Status  

MGMT (methylated?) 
                                        

EGFR (amplification?) 
                                        

EGFR (mutated?) 
                                        

PTEN (deleted?) 
                                        

p53 (mutated?) 
                                        

MARCKS (present?) - 
 

- 
    

- 
 

- - - - - 
 

- - - - 
 

E-cadherin (expression) 
              

- 
   

- 
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Figure S2 (a) Characteristics of the human GBM xenografts compiled from all published data 

for the same tumor lines. Labels of tumor lines that were analyzed in network modeling are 

colored dark red. The chart is divided into three parts where the first part illustrates clinical 

variables; such as, gender/age of patients, invasiveness (red=highly invasive, blue=moderately or 

non-invasive) and recurrence (red=recurrent). The second part shows the response to the 

treatments where red means sensitive to the respective treatment and blue means resistant. The 

last part gives information about the status of several biomarkers found in GBM (red=yes, 

b 
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blue=no). (b) Heat-map of the phosphoproteomic data across 8 GBM xenograft lines. The heat-

map is a representation of log2 fold changes of phosphorylation normalized to the mean of all 8 

channels.  

 

Figure S3. The conceptual flow of the prize-collecting Steiner forest algorithm. Naïve 

methods – here, going out to a distance of two from the terminal nodes and constraining first 

neighbors to be linked at least two terminal nodes – usually gives a hairball network. The PCSF 

algorithm provides a better way of connecting experimental hits via intermediate nodes. 

Additionally, it shows the signal flow starting with cell surface receptors toward downstream 

signaling pathways. In both solutions, red colored nodes are experimental hits and others are 

intermediate nodes.  
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Figure S4 Randomization test. To filter the target set, 100 different terminal sets are generated 

for each tumor where node penalties are kept the same, but the nodes in the terminal set are 

selected randomly from the whole interactome. In this test, the original interactome with the 

original edge costs is used. 
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Figure S5. Methods to find high-ranking target nodes. (a) Calculation of the path damage for 

each node from source node to the target node. When node A is removed from the network, 5 out 

of 9 paths get damaged where those edges are colored in red. (b) Measuring the node centrality. 

Different centrality metrics give different ranking scores. For example in this network, although 

the green node does not have many neighbors, many shortest paths go through this node (low 

degree centrality, high betweenness node). The red node has both high betweenness and high 

degree centrality. The blue node has many neighbors, however it is not central in terms of 

betweenness (high degree centrality, low betweenness). 
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Figure S6. Top ranking proteins for each patient (union of the centrality and path damage ratio 

rankings). If a protein is not present in the network of a tumor line the corresponding entry is 

colored blue. Otherwise corresponding the entry is colored according to the p-value. The most 

common protein targets are highlighted in red boxes. 
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Figure S7 The disease network of GBM6.  Nodes are clustered with the edge-betweenness 

clustering algorithm. Each cluster is enriched in multiple biological processes, which are 

tabulated in the lower panel of the figure. Nodes colored cyan are terminals, white are Steiner 

nodes. Arrow shaped nodes are cell surface receptors. If they were already in the terminal set, 

they are colored purple, if not they are colored pink. 
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Figure S8 Boxplot of protein abundance of MEK1 calculated from Western blotting across 8 

eight GBM xenograft lines (four biological replicates). 
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