
SUPPLEMENTARY MATERIAL 

 

Quasi-Hardy-Weinberg equilibrium 

In the derivation of the model we assume that selection is weak enough such that genotypes 

remain in approximately Hardy-Weinberg proportions after selection.  This ‘quasi-Hardy-

Weinberg equilibrium’ (QHW) assumption is invoked because selection generally causes 

very little departure from the frequencies expected at Hardy-Weinberg Equilibrium (HWE) 

(see Nagylaki 1976), and therefore the assumption allows for very simple (but approximate) 

solutions that are within order s2 (or δ[s2]) of the exact expectation (where s represents a 

generic measure of the strength of selection).  The ‘error’ in the approximations can be 

expressed as the difference between the frequencies of the genotype classes after selection 

and the frequency expected under HWE given the allele frequencies after selection.  The 

deviations from HWE are symmetrical, with the two homozygote classes having equal 

deviations and the sum of the deviation of the homozygote classes always being equal and 

opposite to the deviation of the heterozygote.  The magnitude of the deviation (ε) (which 

represents the deviation of the homozygote classes or half the deviation of the heterozygote 

class) has the value (with the heterozygotes having a deviation of +2ε and the homozygotes 

having a deviation of –ε): 
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 If we consider the magnitude of any of the genetic effects on total fitness as being 

generically captured by the selection parameter s (so all genetic effects are weighted by s), 

then we can see that the deviation caused by additive direct and maternal effects and 

dominance maternal effects are on the order of s2, while the deviation caused by a direct 

dominance effect is on the order of s (Nagylaki 1976).  Furthermore, because of the scaling of 

these effects by the square of the product of the allele frequencies, all deviations tend to be 

very small unless selection is very strong.  Most importantly with respect to the model 

presented in the main text, maternal effects only contribute a very small deviation from 

HWE, and therefore the approximations under the assumption of QHW will capture the 

evolutionary and statistical properties with only minor error that is  ~O(s2).  

In Figure S1 we illustrate the deviations from Hardy-Weinberg frequencies caused by 

selection under several scenarios.  Because the deviations are very small (eq. S1) the 

illustrations all assume relatively strong selection (genetic effects are scaled to be ~5 to 20% 

of mean fitness measured when both alleles are at equal frequency) and only cases for direct 

effects are illustrated since maternal effects contribute a similar pattern, but with smaller 

deviations.  All cases with weaker selection results in deviations that are smaller than the 

thickness of the lines in the plot and therefore appear the same as the case of additive direct 

effects illustrated in Figure S1 panel A (see also Wade 1979). 

In Figure S2 we illustrate the error in the predicted evolutionary trajectory introduced 

by the QHW approximation compared to the exact dynamics.  The QHW does not alter the 

evolutionary trajectories when there are only direct effects since the deviation from the H-W 

expectation in the genotype frequencies of adults is irrelevant under random mating (since 

each generation starts in H-W proportions).  Consequently, we only illustrate scenarios where 

there are maternal effects with or without direct effects.  Because deviations from H-W 

proportions are generally small and have a correspondingly small influence on evolutionary 



dynamics, the scenarios illustrated in Figure 2 assume very strong selection (with genetic 

effects having a magnitude of ca. 20% of mean fitness when both alleles are at equal 

frequency).  

 

Multi-locus model 

To understand how the single locus models translates into a model with two or more loci we 

briefly present a two-locus case, which provides results that logically extend to the N locus 

case (cf. Nagylaki 1993).  We focus on the evolutionary properties of the multi-locus system 

and do not present an analysis of the variance components for which the multi-locus case is a 

simple extension of the single-locus case. In the two-locus model, we add a second locus (the 

B locus) that has two alleles, B1, and B2, which have frequencies x1 and x2 respectively.  

Unless otherwise stated, we follow all of the assumptions for the A locus model examined in 

the main text.  To keep track of the direct and maternal effects of the two loci we add a 

subscript that indicates the locus having the effect; i.e., the A locus has direct effects ao(A) and 

do(A), while the B locus has effects ao(B) and do(B); likewise, the A locus has maternal effects 

am(A) and dm(A), while the B locus has effects am(B) and dm(B).  As in the single locus case, we 

assume that these genetic effects are effects on fitness when considering evolutionary 

properties of the model.  

The properties of a multi-locus system differ from those of a single locus system as a 

consequence of associations between loci.  Consequently, the critical aspect to consider when 

examining the difference between the single-locus model presented in the text and the 

possibility of a multi-locus genetic architecture is the contribution of linkage disequilibrium 

(LD) between loci.  To account for associations between loci we build genotypes from the 

four possible two-locus haploptypes: A1B1, A1B2, A2B1, A2B2. To develop a two-generation 



model in which we can model the influence of the maternal and offspring genomes, we can 

define the frequencies of the four possible haplotypes in the parental generation, t – 1, 

denoted hij, where i indicates the subscript of the A locus allele and j indicates the subscript 

of the B locus allele.  The degree of LD between the two loci at generation (t – 1) is denoted 

D, where D = (h11h22 – h12h21). If we measure allele frequencies and the value of LD (D) after 

selection in the parental generation but before selection in the offspring (so that allele 

frequencies do not change between generations, but LD does due to recombination), we can 

express the frequencies of haplotypes in the offspring generation as a function of their 

frequency in the parent generation and D:   
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The ½ in equations (S2) represents the reduction in LD due to free recombination. These 

haplotype frequencies are used to generate the frequencies of all maternal-offspring two-

locus genotype combinations under the assumption that there is random union of gametes.       

In the case of two loci, mean fitness is essentially the same as in the single locus case 

(eq. 4), with the influence of the two loci being entirely additive (NB, mean fitness is not 

affected by LD): 
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To understand how selection affects patterns of association we can examine the evolutionary 

change in LD.  This is most clearly (and simply) illustrated by assuming that the system starts 

in linkage equilibrium (LE) and then examining the amount of LD that is built by selection in 

a generation.  We denote this evolutionary change in LD as ΔD0, which has the value: 
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Which clearly demonstrates that the degree of LD built by selection will generally be very 

small (Nagylaki 1993) because the magnitude of LD depends on the product of the strength 

of selection on the two loci (i.e., the product of their effects on fitness), meaning that LD will 

generally be ~O(s2) (Nagylaki 1993), and therefore will be negligible unless selection is 

strong.  Because these deviations from LE are generally very small, the multi-locus system 

can be considered to remain in ‘quasi-linkage equilibrium’ (QLE) (Kimura 1965; Nagylaki 

1976, 1993).  

The LD generated by selection essentially contributes an ‘error’ deviation from the 

equations derived under the assumption of QLE for evolutionary change in allele frequencies 

at each of the two loci.  The expressions for evolutionary change in allele frequencies at the A 

and B loci have the same form (i.e., Δx1 is the same as the equation for Δp1, except the 

subscripting for the genetic effects is reversed), so for simplicity we consider evolutionary 

changes in the frequency of the A1 (cf. eq. 6 in the main text): 
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The term on the first line in eq. (S5) is identical to the evolutionary change derived in the 

single locus case (eq. 6), while the second line gives the deviation from the single locus 

expectation caused by selection on the B locus.  This deviation is a function of both the 

magnitude of LD (D), which is expected to be on the order of s2, and the strength of selection 

on the B locus, which is on the order of s, and consequently the total deviation in the 

evolutionary change at the A locus from the expectation under the single locus model (eq. 6) 

caused by selection in a multi-locus system is ~O(s3) (but is ~O[s2] for direct dominance 

effects)  As a result, the evolution of each individual locus in a multi-locus system with an 

arbitrary number of loci will approximately follow the trajectory and dynamics expected 

under the single locus model, with the error in that approximation being ~O(s3).  More 

importantly, contribution of LD to evolutionary change (eq. S5) generally affects the rate but 

not the overall trajectory of evolution.  As a result, the fundamental evolutionary dynamics 

expected at each locus in a multi-locus system will follow the pattern expected under the 

QLE approximation, even if the exact rate differs slightly from that expected.  

The evolutionary trajectories for several arbitrary patterns of genetic effects for the 

single locus expectation under the QLE assumption and the exact expectation calculated 

using equations (S4) for the evolution of LD and (S5) for the evolution of allele frequencies 

are illustrated in Figure S3.  Note that, to achieve a perceivable difference between the single 

locus expectation under the QLE assumption and the exact expectation selection needs to be 

relatively strong (i.e., genetic effects are ca. >10% of mean fitness), which is consistent with 

the expectation of the error.  
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Figure S1. Comparison of genotype frequencies after selection to the Hardy-Weinberg 

expectation. In each case the blue line gives the actual frequency after selection while the red 

line gives the Hardy-Weinberg frequency based on the allele frequency after selection.  The 

genotype that each of the lines corresponds to are only labelled in the first figure since the 

order remains the same in all figures (likewise for the axes).  The lines for the heterozygote 

frequencies are for the unordered heterozygote (i.e., the sum of the frequencies of the 

reciprocal heterozygotes). Unless selection is very strong and the two alleles are at 

intermediate frequencies the two lines are too close to visualize the difference and appear as a 

purple blend of the two lines. A-C show the case of an additive direct effect (ao) with values 

of 0.05, 0.10 and 0.20 respectively while D-F show cases of a dominance direct effect (do) 

with these same respective values.  

 

Figure S2. Evolutionary trajectories at the A locus (illustrated as the frequency of the A1 

allele, p1, through generations) comparing the QHW approximation with the exact dynamics.  

For the QHW scenario the change each generation was calculated using equation (6), while 

for the exact dynamics we allowed selection to cause parental genotype frequencies (as we as 

the associated allele frequencies) to deviate from the H-W proportions and calculated the 

frequencies of the maternal-offspring genotype combinations each generation assuming 

random mating (which were then used to calculate offspring fitness and further changes in 

allele frequencies the following generation, and so on). Because selection needs to be 

relatively strong to generate discernable differences between the QHW approximation with 

the exact dynamics we assume that genetic effects on fitness are scaled to ca. 20% of mean 

fitness in magnitude when both alleles are at equal frequency (i.e., genetic effects have a 

fixed absolute size, and therefore the effect on relative fitness depends on allele frequencies 

as mean fitness increases through evolutionary time). The six scenarios illustrated are: A) the 



locus has an additive maternal effect  (am = 0.2), B) the locus has an dominance maternal 

effect  (dm = 0.2), : C) the locus has both an additive direct and maternal effect  (ao = am = 

0.2), D) the locus has both a dominance direct effect and an additive maternal effect  (do = am 

= 0.2),  E) the locus has both an additive direct effect and a dominance maternal effect  (ao = 

dm = 0.2), and F) the locus has both a dominance direct and maternal effect  (do = dm = 0.2). 

For each case the blue symbol gives the approximation under the QHW assumption, while 

the red symbol gives the exact value calculated by iteration. Axes are only labelled for the 

first panel (A) since they are the same for all (A-F). 

 

Figure S3.  Evolutionary trajectories at the A locus (illustrated as the frequency of the A1 

allele, p1,  through generations) for the single locus case and the two locus case for a series of 

arbitrary scenarios.  For the single locus case, evolutionary changes were iterated through 

generations using equation (6), while for the two locus case, evolutionary changes each 

generation were calculated iteratively using equation (S3) for evolutionary change in LD and 

(S4) for evolutionary change in allele frequencies (with evolutionary change at the B locus 

being calculated using the analogous expression as S4, but for change in the frequency of the 

B1 allele, which is not shown).  The four scenarios illustrated are: A) both loci have additive 

direct and maternal effects (where ao(A) =  ao(B) = am(A) = am(B) =0.2), B) the A locus has an 

additive direct effect (where ao(A) = 0.2), while the B locus has an additive maternal effect 

(where am(B) = 0.4).  C) the A locus has an additive maternal effect (where am(A) = 0.4), while 

the B locus has a dominance maternal effect (where dm(B) =0.8), D) both loci have dominance 

direct and maternal effects (where do(A) =  do(B) = dm(A) = dm(B) =0.4).  For each case the blue 

symbol gives the approximation under the QLE assumption, while the red symbol gives the 

exact value from the multi-locus iteration.  
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Table S1. The expected phenotypes of offspring as a function of the offspring genotype or maternal genotype.  These values are equivalent to the marginal means 

shown in Table 1, but for the case with inbreeding.  See Table 2 for the frequencies under inbreeding. 

 

Genotype 

A1A1 A1A2 A2A1 A2A2 

Expected phenotype as a function of offspring genotype 

1+ ao + am + (am – dm)(F – 1)p2 1 + do + am + (am – dm)(F – 1)p2 1 + do – am – (am – dm)(F – 1)p2 1 – ao – am – (am – dm)(F – 1)p2 

 

Expected phenotype as a function of the maternal genotype 

1 + ao[F+p1(1 – F)] + do(1 – F)p2 + am 1 + ao[(1 – F)(p1 – p2)] + do(1 – F) + dm 1 + ao[(1 – F)(p1 – p2)] + do(1 – F) + dm 1 – ao[F+p2(1 – F)] + do(1 – F)p1 – am 

 

 


