Supplementary Material for "Contribution of Charged Groups to the Enthalpic Stabilization of the Folded States of Globular Proteins"

Voichita M. Dadarlat and Carol Beth Post^{*} Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Cancer Center Purdue University, West Lafayette, IN 47907

November 18, 2007

^{*}This work was partially supported by grants from the U.S. National Institutes of Health (AI39639 to C. B. P.) and the Sloan Foundation and DOE (to V. M. D.)

Table Captions for Supplementary Material

Table 1S.

Enthalpy of unfolding and nonbonded energy for $\rm CH_3$ groups in a polar residues and dipeptides.

Table 2S.

The "unfolded state" nonbonded energy (in kcal/mol), and time average solvent accessible surface areas, < SA > (in Å²), of apolar and charged groups for solvated dipeptides and Ca²⁺.

Table 3S.

Enthalpic contribution of charged groups to protein folded state stability in TRPS. Nonbonded energy of group g, $\langle E_{nb}^g \rangle$, (in kcal/mol), time average SASA, $\langle SA \rangle$ (in Å²), Exposure to solvent, SE, (in %), and enthalpic gain upon folding, ΔH_g^U , solvent reorganization, ΔH_h^U , and total enthalpy change, $\Delta H^U = \Delta H_g^U + \Delta H_h^U$ (in kcal/mol).

Table 4S.

Enthalpic contribution of charged groups to protein folded state stability in RBNA. Nonbonded energy of group $g, \langle E_{nb}^g \rangle$, (in kcal/mol); time average SASA, $\langle SA \rangle$ (in Å²); Exposure to solvent, SE, (in %); and enthalpic gain upon folding, ΔH_g^U , the change in enthalpy upon solvent reorganization, ΔH_h^U , and the total enthalpy change, $\Delta H^U = \Delta H_g^U + \Delta H_h^U$ (in kcal/mol).

Table 5S.

Enthalpic contribution of charged groups to protein folded state stability in HLYSO. Nonbonded energy of group $g \ll E_{nb}^g >$, (in kcal/mol); time average SASA, $\langle SA \rangle$ (in Å²); exposure to solvent, SE, (in %); and enthalpic gain upon unfolding from environmental change, ΔH_g^U , solvent reorganization, ΔH_h^U , and the total change, $\Delta H^U = \Delta H_g^U + \Delta H_h^U$ (in kcal/mol).

Table 6S.

Enthalpic contribution of charged groups in ALACTA. Nonbonded energy of group g, $< E_{nb}^g >$, (in kcal/mol); time average SASA, < SA > (in Å²); exposure to solvent, SE, (in %); enthalpic gain upon folding from charged groups, ΔH_g^U , solvent reorganization, ΔH_h^U , and the net change in enthalpy, ΔH^U (in kcal/mol).

Table 7S.

Contribution of solvent "reorganization" to the change in system enthalpy upon protein unfolding: the average number of water molecules in the first, second and third hydration shells, N_w^{1st} , N_w^{2nd} , N_w^{3rd} ; the average nonbonded energy for each, $\langle E_{nb}^{1st} \rangle$, $\langle E_{nb}^{2nd} \rangle$ $\langle E_{nb}^{3rd} \rangle$; the change in enthalpy of a water molecule, ΔH_w^{1st} , ΔH_w^{2nd} , ΔH_w^{3rd} ; and the maximum change in solvent enthalpy upon complete charged group burial, ΔH_h^{max} . Energies are in kcal/mol. ΔH_w^{shell} is calculated as the difference between $\langle E_{nb}^{1st} \rangle$ and the average nonbonded energy of a water molecule in the dipeptide solution, -9.2 kcal/mol.

Table 8S.

Enthalpy of unfolding - change in local environment of charged group upon protein unfolding, ΔH_g^U (kcal/mol), summed over charged groups of a given type as a function of exposure to solvent, SE, (in %). Group averages, $\overline{\Delta H_g^U}$, are averages over each charged group type in the indicated SE range, from 4 proteins. Global averages, $\overline{\Delta H_g^U}$, are averages over all charged groups in 4 proteins in the indicated SE range.

Table 9S.

Enthalpy of unfolding - contribution from solvent reorganization and structural collapse, ΔH_h^U (kcal/mol), summed over charged groups of a given type as a function of exposure to solvent, SE, (in %). Group averages, $\overline{\Delta H_h^U}$, are averages over each charged group type in the indicated SE range, from 4 proteins. Global averages, $\overline{\Delta H_h^U}$, are averages over all charged groups in 4 proteins in the indicated SE range.

Table 1: Enthalpy of folding and nonbonded energy for terminal CH_3 groups in apolar amino acids and their analog dipeptides

Group	$< E_{nb}^{g,dipep(g)} >$	$< E_{nb}^{g,prot} >$	ΔH_g^U
$CH_3(alad)$	+2.2	-	-
$C\delta_1(\delta_2)H_3(vald)$	-5.5	-	-
$C\gamma_1(\gamma_2)H_3(leud)$	-13.1	-	-
$C\gamma_2H_3(iled)$	+1.2	-	-
$CH_3(ALA)$.28	.8 - 1.5
$CH_3(VAL)$		-5.5 - 6.6	.06
$CH_3(ILE)$.82.6	+1.0 - 1.9
$CH_3(LEU)$		-14.215.2	.6 - 1.1
Average			$\propto +1.3$

Table 2: The "unfolded state" nonbonded energy (in kcal/mol), and time average solvent accessible surface areas, $< SA > (in Å^2)$, of apolar and charged groups for solvated dipeptides and Ca²⁺.

Group	$< E_{nb}^{g,dipep(g)} >$	$< SA^{g,dipep(g)} >$
$CH_3(alad)$	+2.25	77
$C_{\gamma 1}H_3(vald)$	-5.6	68
$C_{\gamma 2}H_3(vald)$	-5.2	63
$C_{\delta 1}H_3(leud)$	-13.2	71
$C_{\delta 2}H_3(leud)$	-13.2	70
$C_{\delta}H_3(iled)$	+1.23	77
$C_{\gamma 2}H_3(iled)$	-1.82	61
$COO^{-}(aspd)$	-201	97
$COO^{-}(glud)$	-184	98
Gu(argd)	-72	142
$\mathrm{NH}_{3}^{+}(\mathrm{lysd})$	-86	59
Ca^{2+}	-606	122

Table 3: Enthalpic contribution of charged groups to protein folded state stability in TRPS. Nonbonded energy of group $g, \langle E_{nb}^g \rangle$, (in kcal/mol), time average SASA, $\langle SA \rangle$ (in Å²), Exposure to solvent, SE, (in %), and enthalpic gain upon folding, ΔH_g^U , solvent reorganization, ΔH_h^U , and total enthalpy change, $\Delta H^U = \Delta H_g^U + \Delta H_h^U$ (in kcal/mol).

Group	$\langle E_{nb}^g \rangle$	$\langle SA \rangle$	SE	ΔH_g^U	ΔH_h^U	ΔH^U
$COO^{-}(ASP84)$	-210.5	0	0	+4.8	2.4	7.2
$COO^{-}(ASP176)$	-216.0	0	0	+7.5	2.4	9.9
$COO^{-}(ASP171)$	-191	2	2	-5	2.4	-2.6
$COO^{-}(ASP145)$	-227.5	52	52	+13.3	1.2	14.5
$COO^{-}(ASP133)$	-200.5	79	81	3	.5	.2
$COO^{-}(ASP53)$	-201.5	17	18	+.3	1.2	1.5
$COO^{-}(GLU62)$	-202.0	0	0	+9	1.7	10.7
$COO^{-}(GLU52)$	-208.0	0	0	+12	1.7	13.7
$COO^{-}(GLU59)$	-191	44	45	+3.5	.9	4.4
$COO^{-}(GLU167)$	-185.8	99	100	+.9	0.0	.9
Gu(ARG49)	-69.5	37	26	-1.3	1.4	.1
Gu(ARG99)	-74.8	94	67	+1.4	.6	2.0
$\mathrm{NH}_3^+(\mathrm{LYS43})$	-82.5	18	31	-1.8	.5	-1.3
$\rm NH_3^+(LYS69)$	-84.2	37	63	9	.4	5
$\rm NH_3^+(LYS89)$	-91.1	27	46	+2.6	.6	3.2
$\rm NH_3^+(LYS91)$	-79.6	40	68	-3.2	.4	-2.8
$\rm NH_3^+(LYS125)$	-87.3	54	92	+.7	.1	.8
$\mathrm{NH}_3^+(\mathrm{LYS136})$	-84.0	29	49	-1.0	.6	4
$\mathrm{NH}_3^+(\mathrm{LYS139})$	-87.4	50	84	+.7	.2	.9
$\mathrm{NH}_3^+(\mathrm{LYS149})$	-89	10	16	+1.5	.9	2.4
$\mathrm{NH}_3^+(\mathrm{LYS170})$	-85.6	39	66	2	.4	.2
$\mathrm{NH}_3^+(\mathrm{LYS186})$	-86.3	32	54	+.2	.5	.7
$\mathrm{NH}_3^+(\mathrm{LYS200})$	-86.2	36	62	+.1	.4	.5
$\mathrm{NH}_3^+(\mathrm{LYS202})$	-85.7	38	66	2	.4	.2
$\mathrm{NH}_3^+(\mathrm{LYS208})$	-90.3	28	48	+2.2	.6	2.8
$\mathrm{NH}_3^+(\mathrm{LYS217})$	-89.4	45	76	+1.7	.3	2.0

Table 4: Enthalpic contribution of charged groups to protein folded state stability in RBNA. Nonbonded energy of group g, $\langle E_{nb}^g \rangle$, (in kcal/mol); time average SASA, $\langle SA \rangle$ (in Å²); Exposure to solvent, SE, (in %); and enthalpic gain upon folding, ΔH_g^U , the change in enthalpy upon solvent reorganization, ΔH_h^U , and the total enthalpy change, $\Delta H^U = \Delta H_g^U + \Delta H_h^U$ (in kcal/mol)

Group	$\langle E_{nb}^g \rangle$	$\langle SA \rangle$	SE	ΔH_g^U	ΔH_h^U	ΔH^U
$COO^{-}(ASP14)$	-197.7	14	14	-1.7	2.1	.4
$COO^{-}(ASP38)$	-220.8	59	61	+9.9	.9	10.8
$COO^{-}(ASP53)$	-199.0	61	63	-1.0	.9	1
$COO^{-}(ASP83)$	-225.4	22	23	+12.2	1.8	14.0
$COO^{-}(ASP121)$	-212.5	8	8	+5.8	2.2	8.0
$COO^{-}(GLU2)$	-209.5	28	29	+12.8	1.2	14.0
$COO^{-}(GLU9)$	-191.0	82	84	+3.5	.3	3.8
$COO^{-}(GLU49)$	-177.9	41	42	-3.1	1.0	-2.1
$COO^{-}(GLU86)$	-192	38	38	+4	1.1	5.1
$COO^{-}(GLU111)$	-178.8	79	80	-2.6	.3	-2.3
Gu(ARG10)	-73.8	26	18	+.9	1.6	2.5
Gu(ARG33)	-75.8	33	23	+1.9	1.5	3.4
Gu(ARG39)	-71.7	101	72	2	.5	.3
Gu(ARG85)	-75.4	61	43	+1.7	1.1	2.8
$\rm NH_3^+(LYS1)$	-82.6	58	100	-1.7	0.0	-1.7
$\rm NH_3^+(LYS7)$	-81.6	9	15	-2.2	.9	-1.3
$\rm NH_3^+(LYS31)$	-83.5	44	75	-1.3	.3	-1.0
$\rm NH_3^+(LYS37)$	-91.3	29	50	+2.7	.6	3.3
$\rm NH_3^+(LYS41)$	-77.9	15	25	-4.1	.8	-3.3
$\rm NH_3^+(LYS61)$	-91.8	48	82	+2.9	.2	3.1
$\rm NH_3^+(LYS66)$	-85.4	30	51	3	.5	.2
$\rm NH_3^+(LYS91)$	-82.0	33	55	-2.0	.5	-1.5
$\mathrm{NH}_{3}^{+}(\mathrm{LYS98})$	-84.3	56	95	9	.1	8
$\mathrm{NH}_3^+(\mathrm{LYS104})$	-92.4	35	59	+3.7	.5	4.2

Table 5: Enthalpic contribution of charged groups to protein folded state stability in HLYSO. Nonbonded energy of group $g , \langle E_{nb}^g \rangle$, (in kcal/mol); time average SASA, $\langle SA \rangle$ (in Å²); exposure to solvent, SE, (in %); and enthalpic gain upon unfolding from environmental change, ΔH_g^U , solvent reorganization, ΔH_h^U , and the total change, $\Delta H^U = \Delta H_g^U + \Delta H_h^U$ (in kcal/mol).

Group	$\langle E_{nb}^g \rangle$	$\langle SA \rangle$	SE	ΔH_g^U	ΔH_h^U	ΔH^U
$COO^{-}(ASP48)$	-218.0	25	25	+8.5	1.8	10.3
$COO^{-}(ASP66)$	-216.0	1	0	+7.5	2.4	9.9
$COO^{-}(ASP18)$	-201.5	36	37	+.3	1.5	1.8
$COO^{-}(ASP52)$	-191.0	20	21	-5.0	1.9	-3.1
$COO^{-}(ASP87)$	-213.3	48	49	+6.2	1.2	7.4
$COO^{-}(ASP101)$	-212.5	55	56	+5.8	1.1	6.9
$COO^{-}(ASP119)$	-202.0	61	63	+.5	.9	1.4
$COO^{-}(GLU7)$	-181.2	61	62	-1.4	.6	8
COOH(GLU35)	-52.3	16	-	-		
Gu(ARG5)	-68.2	45	32	-1.9	1.6	3
Gu(ARG14)	-74.9	136	97	+1.5	.1	1.6
Gu(ARG21)	-72.3	101	72	+.2	.7	.9
Gu(ARG45)	-73.4	78	55	+.7	1.1	1.8
Gu(ARG61)	-78.2	27	19	+3.1	1.9	5.0
Gu(ARG68)	-69.6	128	91	-1.2	.2	-1.0
Gu(ARG73)	-68.4	91	65	-1.8	.8	-1.0
Gu(ARG112)	-74.3	73	52	+1.2	1.2	2.4
Gu(ARG114)	-74.2	97	69	+1.1	.7	1.8
Gu(ARG125)	-76.8	67	48	+2.4	1.2	3.6
Gu(ARG128)	-67.4	140	100	-2.2	0	-2.2
$\rm NH_3^+(LYS13)$	-87.8	38	65	+.9	.4	1.3
$\rm NH_3^+(LYS33)$	-82.3	41	70	-1.9	.3	-1.6
$\rm NH_3^+(LYS96)$	-82.2	37	62	-1.9	.4	-1.5
$\rm NH_3^+(LYS97)$	-89.0	38	65	+1.5	.4	1.9
$\mathrm{NH}_3^+(\mathrm{LYS116})$	-88.1	35	59	+1.1	.5	1.6

Table 6: Enthalpic contribution of charged groups in ALACTA. Nonbonded energy of group $g, \langle E_{nb}^g \rangle$, (in kcal/mol); time average SASA, $\langle SA \rangle$ (in Å²); exposure to solvent, SE, (in %); enthalpic gain upon folding from charged groups, ΔH_g^U , solvent reorganization, ΔH_h^U , and the net change in enthalpy, ΔH^U (in kcal/mol).

Group	$\langle E_{nb}^g \rangle$	$\langle SA \rangle$	SE	ΔH_q^U	ΔH_h^U	ΔH^U
$COO^{-}(ASP15)$	-210.2	63	64	+4.6	.9	5.5
$COO^{-}(ASP38)$	-203.5	39	40	+1.3	1.5	2.8
$COO^{-}(ASP47)$	-217.5	34	34	+8.3	1.6	9.9
$COO^{-}(ASP65)$	-189.0	84	86	-6.0	.3	-5.7
$COO^{-}(ASP79)$	-204.0	32	33	+1.5	1.6	3.1
$COO^{-}(ASP83)$	-218.4	13	13	+8.7	2.1	10.8
$COO^{-}(ASP84)$	-189.4	63	64	-5.8	.9	-4.9
$COO^{-}(ASP85)$	-192.2	44	64	-4.4	.9	-3.5
$COO^{-}(ASP88)$	-218.0	16	17	+8.5	2.0	10.5
$COO^{-}(ASP89)$	-213.3	0	0	+6.2	2.4	8.6
$COO^{-}(ASP117)$	-201.4	52	53	+.2	1.1	1.3
$COO^{-}(GLU2)$	-181.0	96	98	-1.5	0.0	-1.5
$COO^{-}(GLU8)$	-182.9	44	45	6	.9	.3
$COO^{-}(GLU12)$	-180.8	31	32	-1.6	1.2	4
$COO^{-}(GLU26)$	-188.6	36	36	+2.3	1.1	3.3
$COO^{-}(GLU50)$	-189.5	50	51	+2.8	.8	3.6
$COO^{-}(GLU114)$	-181.4	84	86	-1.3	.2	-1.1
$COO^{-}(GLU122)$	-178	83	85	-3.0	.3	-2.7
Gu(ARG11)	-82.4	141	100	+5.2	0.0	5.2
$\rm NH_3^+(LYS6)$	-82.7	40	68	-1.7	.4	-1.3
$\rm NH_3^+(LYS14)$	-91.5	37	62	+2.8	.4	3.2
$\rm NH_3^+(LYS17)$	-89.2	47	80	+1.6	.2	1.8
$\rm NH_3^+(LYS59)$	-89.8	33	56	+1.9	.5	2.4
$\rm NH_3^+(LYS63)$	-84.0	2.6	4	-1.0	1.1	.1
$\rm NH_3^+(LYS80)$	-88.0	40	68	+2.0	.4	2.4
$\rm NH_3^+(LYS94)$	-82.6	36	60	-1.7	.4	-1.3
$\rm NH_3^+(LYS95)$	-78	16	27	-4.0	.8	-3.2
$\mathrm{NH}_3^+(\mathrm{LYS109})$	-81.4	50	85	-2.3	.2	-2.1
$\mathrm{NH}_3^+(\mathrm{LYS115})$	-82.6	33	55	-1.7	.5	-1.2
$\mathrm{NH}_3^+(\mathrm{LYS123})$	-80.1	37	62	-3.0	.4	-2.6

Table 7: Contribution of solvent "reorganization" to the change in system enthalpy upon protein unfolding: the average number of water molecules in the first, second and third hydration shells, N_w^1 , N_w^2 , N_w^3 ; the average nonbonded energy for each, E_{nb}^1 , E_{nb}^2 , E_{nb}^3 ; the change in enthalpy of a water molecule for each hydration shell, ΔH_w^1 , ΔH_w^2 , ΔH_w^3 ; and the maximum change in solvent enthalpy upon complete charged group burial, ΔH_h^{max} . Energies are in kcal/mol. For each shell, ΔH_w^{sh} is calculated as the difference between E_{nb}^{sh} and the average nonbonded energy of a water molecule in the dipeptide solution, -9.2 kcal/mol.

Group	N_w^1	E_{nb}^1	ΔH_w^1	N_w^2	E_{nb}^2	ΔH_w^2	N_w^3	E_{nb}^3	ΔH_w^3	ΔH_h^{max}
glud	4.5	-12.3	-3.1	17.0	-8.6	.6	27	-9.0	.2	1.7
aspd	4.1	-11.7	-2.5	13.4	-8.7	.5	27	-9.0	.2	2.4
lysd	4.1	-11.5	-2.3	15.6	-8.7	.5	28	-9.1	.1	1.1
argd	4.9	-10.3	-1.1	18.1	-8.8	.4	27.8	-9.2	0.0	1.9
vald	5.7	-8.7	.5	9.8	-9.7	5	22	-9.0	.2	2.4

Table 8: Enthalpy of unfolding - change in local environment of charged group upon protein unfolding, ΔH_g^U (kcal/mol), summed over charged groups of a given type as a function of exposure to solvent, SE, (in %). Group averages, $\overline{\Delta H_g^U}$, are averages over each charged group type in the indicated SE range, from 4 proteins. Global averages, $\overline{\Delta H_g^U}$, are averages over all charged groups in 4 proteins in the indicated SE range.

Group	Protein	ΔH_{q}^{U}						
		0-100	0-20	20-40	40-60	60-80	80-100	
	TRPS	+20.6	+7.6	0	+13.3	0	3	
g=	RBNA	+25.2	+4.1	+12.2	0	+8.9	0	
COO^{-}	HLYSO	+23.0	+7.5	+3.5	+12.0	0	0	
(ASP)	ALACTA	+23.1	+23.4	+11.1	+.2	-5.6	-6	
	$\sum \Delta H_g^U$	+91.9	+42.6	+26.8	+25.5	+3.3	-6.3	
	$\sum N^{g}$	29	10	7	4	6	2	
	$\overline{\Delta H_q^U}$	+3.2	+4.3	+3.8	+6.4	.6	-3.2	
	TRPS	+25.4	+21	0	+3.5	0	+.9	
g=	RBNA	+14.6	0	+16.8	-3.1	-2.6	+3.5	
COO^{-}	HLYSO	-1.4	0	0	0	-1.4	0	
(GLU)	ALACTA	-2.9	0	+.7	+2.2	0	-5.8	
	$\sum \Delta H_q^U$	+35.7	+21.0	+17.5	+2.6	-4.0	-1.4	
	$\sum N^{g}$	17	2	4	4	2	5	
	$\overline{\Delta H_q^U}$	+2.1	+10.5	+4.4	+.7	-2.0	3	
	TRPS	+.1	0	-1.3	0	+1.4	0	
g=	RBNA	+4.3	+.9	+1.9	+1.7	2	0	
Gu(ARG)	HLYSO	+3.1	+3.1	-1.9	+4.3	5	-1.9	
	ALACTA	+5.2	0	0	0	0	+5.2	
	$\sum \Delta H_q^U$	+12.7	+4.0	-1.3	+6	+.7	+4.3	
	$\sum N^{g}$	18	2	3	4	5	4	
	$\overline{\Delta H_q^U}$	+.7	+2	4	+1.5	+.1	+1.1	
	TRPS	+2.4	+1.5	-1.8	+4.0	-2.7	+1.4	
g=	RBNA	-3.8	-2.2	-4.1	+3.6	-1.3	+.3	
NH_3^+	HLYSO	3	0	0	+1.1	-1.4	0	
(LYS)	ALACTA	-7.1	-1.0	-4.0	-1.5	+1.7	-2.3	
	$\sum \Delta H_q^U$	-8.8	-1.7	-9.9	+6.6	-3.7	1	
	$\sum N^{g}$	40	3	3	11	17	6	
	$\overline{\Delta H_q^U}$	2	6	-3.3	+.7	2	1	
All	$\sum \sum \Delta H_q^U$	131.5	65.9	33.1	38.1	-3.7	-3.5	
All	$\sum \sum N^{g}$	104	1117	17	23	30	17	
Ave All	$\Delta \widetilde{H}_{a}^{U}$	1.26	+3.9	1.9	+1.7	1	2	

Table 9: Enthalpy of unfolding - contribution from solvent reorganization and structural collapse, ΔH_h^U (kcal/mol), summed over charged groups of a given type as a function of exposure to solvent, SE, (in %). Group averages, $\overline{\Delta H_h^U}$, are averages over each charged group type in the indicated SE range, from 4 proteins. Global averages, $\overline{\Delta H_h^U}$, are averages over all charged groups in 4 proteins in the indicated SE range.

Group	Protein			Δ	H_h^U		
		0-100	0-20	20-40	40-60	60-80	80-100
	TRPS	10.1	8.4	0	1.2	0	.5
g=	RBNA	7.9	4.3	1.8	.9	.9	0
COO-	HLYSO	10.8	2.4	5.2	2.3	0.9	0
(ASP)	ALACTA	15.3	6.5	4.7	1.1	2.7	.3
	$\sum \Delta H_h^U$	43.1	21.6	11.7	5.5	+3.5	.8
	$\sum N^g$	29	10	7	4	6	2
	$\overline{\Delta H_h^U}$	1.48	2.2	1.7	1.4	.6	.4
	TRPS	4.3	3.4	0	.9	0	0
g=	RBNA	3.9	0	2.3	1.0	.3	.3
COO-	HLYSO	.6	0	0	0	.6	0
(GLU)	ALACTA	4.5	0	2.3	1.7	0	.5
	$\sum \Delta H_h^U$	13.1	3.4	4.6	3.6	1.7	.8
	$\sum N^{g}$	17	2	4	4	2	5
	$\overline{\Delta H_h^U}$.8	1.7	1.2	.8	.9	.2
	TRPS	2.0	0	1.4	0	.6	0
g=	RBNA	4.7	1.6	1.5	1.1	.5	0
Gu(ARG)	HLYSO	9.5	1.9	1.6	3.5	2.2	.3
	ALACTA	0	0	0	0	0	0
	$\sum \Delta H_h^U$	16.2	3.5	4.5	4.6	3.3	.3
	$\sum N^g$	18	2	3	4	5	4
	$\overline{\Delta H_h^U}$.9	1.8	1.5	1.2	.7	.1
	TRPS	6.3	.9	.5	2.3	2.5	.3
g=	RBNA	4.4	.9	.8	2.1	.3	+.3
NH_3^+	HLYSO	2.0	0	0	.5	1.5	0
(LYS)	ALACTA	5.3	1.1	.8	1.4	1.8	.2
	$\sum \Delta H_h^U$	18.2	2.9	2.1	6.3	5.3	.8
	$\sum N^g$	40	3	3	11	17	6
	$\overline{\Delta H_h^U}$.5	1.0	.7	.6	.3	.1
All	$\sum \Delta H_h^U$	90.6	31.4	22.9	20.0	13.8	2.7
All	$\sum N^g$	104	127	17	23	30	17
All Ave	$\Delta \widetilde{H}^U$.9	1.8	1.3	.9	.03	.16