Supplemental Materials Molecular Biology of the Cell

Heaslip et al.

Supplemental File.

Supplemental Figure Legends.

Figure S1. SAG1 Δ **GPI-GFP and anti-Gra6 co-localize to the dense granules.** Fluorescence image of an extracellular parasite showing co-localization between SAG1 Δ GPI-GFP and dense granule protein anti-Gra6. Right panels are 3x magnification of area in the white box. *Green:* SAG1 Δ GPI-GFP. *Red:* anti-Gra6. *Cyan:* anti-GAP45 to highlight the parasite periphery.

Figure S2. Analysis of dense granule motions using MSD. (A) Fluorescence image of parasites with GFP labeled dense granules (green) and mCherryFP labeled microtubules (red). Yellow arrow indicates region of the parasite used to make Kymograph. Kymograph, which depicts the spatial position (x-axis) along the trajectory of a granule over time (y-axis), shows a dense granule moving bidirectionally towards the apical (A) and then basal (B) end of the parasite. mCherryFP-Tubulin expression allows the unambiguous identification of the parasites apical end (white arrow heads). (B) Example trajectories and MSD plots on a log-log axes (large graphs) and linear axes (insets) for stationary (red), diffusive-like (blue) and directed (green) dense granule trajectories. Diffusive exponent, α , which is the slope of the log-log MSD indicated. (C) Bar chart indicates directionality of dense granule motions.

Figure S3. Creation and analysis of LoxP-Actin parasite lines. (A) Strategy for creating *LoxP-Actin* and conditional $\triangle Actin$ parasite lines. Adapted from Andenmatten et al 2013. (B) Fluorescence image of untreated and rapamycin treated *LoxP-Actin* parasites. 20% of vacuoles contained at least one parasite (white arrow head) that contain no dense granules. *Green:* YFP. *Red:* SAG1 \triangle GPI-mCherryFP. *Cyan*: anti-actin.

Figure S4. Protein sequence analysis of TgMyoF. (A) Alignment of TgMyoF (EPT25279.1) with Mouse Myosin Va (NP_034994.2), Myosin VI (Q9UM54.4), Myosin VII (XP_644171.1), Myosin X (CAB56466.2) motor domains. 3 unique inserts in TgMyoF motor domain are highlighted with an orange box. Unique insert in Myosin VI (insert 1) is highlighted with a blue box. P-loop, Loop1 and Switch 1, conserved sequences that determine the kinetics of nucleotide binding to and release from the motor's active site, are highlighted with red boxes. NCBI accession numbers are shown in brackets. (B) Alignment of the IQ motifs of TgMyoF and Myosin Va. Each IQ motifs are highlighted with a green box. (C) Prediction of coiled-coiled regions in TgMyoF and Myosin Va. Green, blue and red lines indicates scan region of 14, 21 and 28 residues respectively.

Figure S5. Creation of LoxP-TgMyoF. Schematic of TgMyoF genomic locus in parental and *LoxP-TgMyoF* parasites. Primer binding sites (F1/F2 and R1/R2) are indicated. (B) Genomic PCR analysis of parental and *LoxP-TgMyoF* parasites lines. (C) Fluorescence image of control and rapamycin treated *LoxP-TgMyoF* parasites indicating accumulation of the microneme protein AMA-1 in the residual body upon loss of functional TgMyoF. Residual body indicated with *. *Green:* TgMyoF-EmeraldFP. *Red:* anti-GAP45 highlighted parasite periphery. *Cyan:* anti-AMA-1 for visualizing the micronemes.

Figure S6. eGFP-TgMyoF localizes to the parasite cytosol. Fluorescence image of intracellular parasites ectopically expressing eGFP-TgMyoF. *Green:* eGFP-TgMyoF. *Red:* anti-GAP45 to highlight parasite periphery.

Figure S7. TqMyoF- ΔCT parasites have a replication defect. (A) Immunofluorescence images of parental (top), LoxP-TqMvoF (middle) and TqMvoF- Δ CT/apicoplast positive (bottom) parasites 40 hours after host cell invasion. Parasites were stained with anti-GFP/Alexa 488 conjugate (left), anti-HSP60 as a marker for the apicoplast (pink) and IMC1 (blue) to highlight the parasite periphery (right). (B) Comparison of the intracellular growth of parental, LoxP-TqMyoF, TqMyoF- Δ CT/apicoplast-positive and TqMyoF- Δ CT/apicoplast-negative parasite strains 40 hours after infection. In both parental and LoxP-TgMyoF parasite lines 60% of parasite vacuoles contain 32 or more parasites. Both TqMyoF-ACT populations have a severe replication defect and vacuoles containing \geq 32 parasites were never observed, and less than 10% contained 16 parasites/vacuole. In each case ~25% of vacuoles contained "odd" numbers of parasites (i.e. - parasite number per vacuole was not an integral to the power of 2) and are disorganized within the vacuole (A; bottom panel). Thus the replication defect was equally severe in $TqMvoF-\Delta CT$ /apicoplast positive and $TqMvoF-\Delta CT$ /apicoplast negative parasites indicating that loss of apicoplast inheritance contributes to but cannot fully account for the replication defect observed in the TaMyoF-ACT parasites. Thus, other defects associated with loss of TgMyoF, including but not limited to dense granule trafficking likely also contributes to the lethality of this parasite line.

Supplemental Movie Legends.

Movie S1. Dense granule dynamics in intracellular *T. gondii* parasites expressing SAG1 Δ GPI-GFP. Imaging speed 10fps, playback 6x real time.

Movie S2. Dense granule dynamics in intracellular *T. gondii* parasites expressing SAG1 Δ GPI-GFP. Microtubules were depolymerized with oryzalin (*left*), actin was depolymerized with cytochalasin D (*middle*) and actin was stabilized with jasplakinolide (*right*). Imaging speed 10fps, playback 6x real time.

Movie S3. Dense granule dynamics in untreated *(left)* and rapamycin (*right*) treated *LoxP-Actin* parasites expressing SAG1 Δ GPI-mCherryFP. Imaging speed 10fps, playback 6x real time.

Movie S4. Dense granule dynamics in untreated *(left)* and rapamycin (*right*) treated *LoxP*-*TgMyoF* parasites expressing SAG1 Δ GPI-mCherryFP. Imaging speed 10fps, playback 6x real time.

Figure S1

В

Stationary

Figure S2

Figure S3

Α

Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	MEDDDTLNGEYFQP MDSFFPEGARVWLRENGQHFPSTVNSCAEGVVVFQTDYGQVFTYKQSTI MEDGKPVWAPHPTDGFQMGNIVDIGPDSLTIEPLNQKGKTFLALINQVFPAEEDS- -MAASELYTKFARVWIPDPEEVWKSAELLKDYKPGDKVLLLHLEEGKDLEYRLDPK MTASSADGASAPGGGDPGEEEVRCAVGTKIYVPDAADVWRTAEVVKIQEDGSLTARVDAD . :	14 49 55 55 60
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	VEDMITLPILTEESLLLNLKMRYKK-KEIYTYT TNQKVTAMHPLHEEGVDDMASLAELHGVAIMYNLFQRYKR-NQIYTYI KKDVEDNCSLMYLNEATLLHNIKVRYSK-DRIYTYV TGELPHLRNPDILVGENDLTALSYLHEPAVLHNLRVRFIDSKLIYTYC NELVQLKKNDIWYLCNTDVWNTTGLSAPTDLTMLTHLHEAAVLDSLNLRFDI-DEIYTFT * * * ::: .: *: . ***:	46 96 90 103 119
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	Insert A (22aa) GSILVAVNPYEILP-IYTADIVKSYFAKSRNLML GSIIASVNPYQPIAGLYERATMEEYSRCHLGELP ANILIAVNPYFDIPKIYSSEAIKSYQGKSLGTRP GIVLVAINPYEQLP-IYGEDIINAYSGQNMGDMD GPILIAVNPFKQITGLYDMKQLVRYIASSELPMP GVPSSSSGSSSNAPVALPISRQPHVF	83 134 128 140 179
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	. :: :: **: * **:* P-loop Loop 1 AVSDAAFTNMIEEGKNQSIIISGESGAGKTESTKLIIQYLAARTNRHSQVE AIANECYRCLWKRHDNQCVLISGESGAGKTESTKLILKFLSVISQQTLDLGLQEKTSSVE AIADKAFRDMKVLKMSQSIIVSGESGAGKTENTKFVLRYLTESYGTGQDID AVAEEAYKQMARDERNQSIIVSGESGAGKTYSAKYAMRYFATVSGSASEANVE ASSSAAYQGMCNEKQSQTILISGESGAGKTESTKFVMKFLACAGSEDLERRSQVE	134 194 179 193 234
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	Switch 1 Insert B (9aa) QMIVESSPILEAFGNAKTIRNNNSSRFGK FIEIQFNF EGHISGARIINYLL QAILQSSPIMEAFGNAKTVYNNNSSRFGK FVQLNICC OGNIQGGRIVDYLL DRIVEANPLLEAFGNAKTVRNNNSSRFGK FVEIHFNE SSVVGGFVSHYLL EKVLASNPIMESIGNAKTTRNDNSSRFGK FIEIGFDK RYRIIGANMRTYLL AQVLESNPLLEAFGNARTLRNDNSSRFGK FIELQFQT SKAKRMSGNRGRLCGARIQTYLL ::::::::::::::::::::::::::::::::::::	185 245 230 244 294
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	Insert C (22aa) EKSRISHQASSERNYHIFYQLLAGASDELKE EKNRVVRIPGERNYHIFYALLAGLDQEERE EKSRICVQGKEERNYHIFYRLCAGASEDIRE EKSRVVFQAEEERNYHIFYRLCAGASEDIRE EKSRVVFQAEEERNYHIFYQLCASAKLPEFK EKVRVCDQQEGERNYHIFYQLCAAAEAAAQTGGIYYFPSPKFRKAADAKAQEMDMSLFEP ** *: :	223 283 268 282 354
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	Insert 1 -EDYHYLSQ -ENYHYLNQ -ENYHYLNQ -DNFRYLNRGCTRYFANKETDKQILQNRKSPEYLKAGSMKDPLLDDHGDFIRMCTAMKKI -DSFHYTKQ -DSFHYTKQ -CONFRYLTK -SCCUQLQGVDDCEEFESTLFAMQTV :.::* :	256 316 327 315 388
Myosin_VII Myosin_X Myosin_VI Myosin_Va TgMyoF	GLPEDKQFTIFSIVSAVLHIGNLKFEKSEKTQGAEGSEVSNKDTLKIIAQLLSVDPVK QFSKEEVREVLRLLAGILHLGNIEFITAGGAQIPFKTALGRSADLLGLDPTQ GLDDEEKLDLFRVVAGVLHLGNIDFEEAGSTSGGCNLKNKSAQSLEYCAELLGLDQDD GISESYQMGIFRILAGILHLGNVGFASRDSDSCTIPPK-HEPLTIFCDLMGVDYEE GISPEEQMSILSVVGAVLCLGNVSFETPKANSEGSQVAASCTEYVCKACRLLGVQREA	314 368 385 370 446

Myosin VII	LETCLTIRHVLIRGQNFVIPLKVNEAEDTRDSLAKALYGNVFNWLVVFINS	365
Myosin X	LTDALTQRSMILRGEEILTPLSVQQAVDSRDSLAMALYARCFEWVIKKINS	419
Myosin VI	L.RVSI.TTRVMI.TTAGGTKGTVIKVPI.KVEOANNARDALAKTVYSHI.FDHVVNRVN	440
Myosin Va		121
myosin_va		TZI
тдмуон	LQEAMCIRTIKTAHESIRKPLKTDEAWEMKDALCKALIGCLFLQVVAKTNASIGI	201
	· · · · · · · · · · · · · · · · · · ·	
Myosin VII	KIHKPQKNSTFIGVLDIFGFENFKKNSFEQFCINFANEKLQQHFNQHIFKLEQEEYEK	423
Myosin X	RIKG-KDDFKSIGILDIFGFENFEVNHFEQFNINYANEKLQEYFNKHIFSLEQLEYSR	476
Myosin VI	OCFPFETSSYFIGVLDIAGFEYFEHNSFEOFCINYCNEKLOOFFNERILKEEOELYOK	498
Mvosin Va	ALHSAVKOHSFIGVLDIYGFETFEINSFEOFCINYANEKLOOOFNMHVFKLEOEEYMK	479
	LKEVOSADDI.I.I.FCCVI.DIFCFECFOFNSFEOI.CINFTNERI.ONFFNTFVFKCEFEI.YRA	561
1911/01	*:*** *** *: * ***: **: **: **: **: **:	001
		400
Myosin_VII	EKINWSKIVYNDNQECLDLIEKRPLGILSLLDEESRFPQATDLTYLDKLHTNHEKH-PYY	482
Myosin_X	EGLVWEDIDWIDNGECLDLIEKK-LRLLALINEESHFPQATDSTLLEKLHSQHANN-HFY	534
Myosin_VI	EGLGVNEVHYVDNQDCIDLIEAKLVGILDILDEENRLPQPSDQHFTSAVHQKHKDH-FRL	557
Myosin_Va	EQIPWTLIDFYDNQPCINLIESK-LGILDLLDEECKMPKGTDDTWAQKLYNTHLNKCALF	538
ТдМуоF	EGIQWNPLDFPDNADCVALLQEKPLGLFSMLDEECMVPAGKDRGFNNKVCQKHGGHKRFG	621
	* : : : * *: : : : : : : : : : : * : *	
Mvosin VII	EKPRRSKNTFVVKHYAGEVHYDTOGFLDKNKDTVSDDLSSLLOGSKSKFI	532
Myosin X		584
Myosin_X		617
Myosin_Vi		501 /
Myosin_va		288
дамлон.	VIKTKPNCFVVHHFAGSVEYCSDGFLEKNKDQLSVDLQEAVKASTIPFV	6/0
	. : * ::*:* * * :::**.* : * :: Loop 2	
Mvosin VII	TELET PPREEGDDSDKGREKKKTTAGOT FKTOLOSLIN	570
Myosin X		624
Muocin VT		656
Myosin_Vi		610
MyOSIN_Va		040
ЛдМЛоғ.	SNLFSAFLPRGTAEDGSGKKRKFVTVSSEFREQLGALME	709
	:**	
Myosin VII	ILSSTOPHYVRCIKPNTTKEPAVYDRELIOAOLRYAGMMETIRIRKI.GYPIRHTHKEFRD	630
Myosin X		684
Muosin_X		716
Myosin_vi		710
Myosin_va	TLNATTPHYVRCIKPNDFKFPFTFDEKRAVQQLRACGVLETIRISAAGFPSRWTYQEFFS	708
TgMyoF	TVDKTAPHFIRCIKPNPQNLPDLFDRATVNEQLRYGGVLQAVQVSRAGYPVRLSHRDCFF	769
	: : . ::***** . :: **: *:: : *:. *::	
Myosin VII	RYLILDYRARSTDHKOTCAGLINLLSGTGGLERDEWOLGNT	671
Myosin X	RYKVLMRNLALPDDIRGKCTVLLOVYDASNSEWOLGKT	722
Myosin VI		754
Myosin_Vi		716
MyOSIN_Va		740
тдмуоғ	* * * * *	029
	· · · · · · · · · · · · · · · · · · ·	
Myosin_VII	KVFIR 676	
Myosin_X	KVFLR 727	
Myosin_VI	KVFFR 759	
Myosin_Va	KIFFR 751	
ТдМуоF	LCFFK 834	
	*::	

D		IQ-1	
TgMyoF	KTLCFFKNEAYEILSANL	MSVRVAAATAIEARYKCFVQRRFFLMYRQTVV {	877
MyoVa	KTKIFFRAGQVAYLEKLR	RADKLRAACIRIQKTIRGWLLRKRYLCMQRAAI	794
	** **: *.	· **· *: :: *: :* ::::	
	IQ-2	IQ-3	
TgMyoF	FLQSHIRMFLCKLEAQRI	RESRAARRVENFMRGAVARLRYLRTLENIRRI	927
MyoVa	TVQRYVRGYQARCYAKFL	RRTKAATTIQKYWRMYVVRRRYKIRRAATIVI 8	844
	<u>** ::* : .: *: *</u>	*.::** :::: * *.* **	
	IQ-4	IQ-5	
TgMyoF	QAAWRGKQTRSQLRDR <mark>K</mark> I	EEAASKIQAFWKMHKQRMFYT <mark>NLKKASTIAQL</mark>	977
MyoVa	QSYLRGYLTRNRYRKILR	REYKAVIIQKRVRGWLARTHYK <mark>RTMKAIVYLQC</mark> 8	894
	*: ** **.: *.	* * ** * * * • * * *	
	IQ-6		
TgMyoF	KWKRILARRMLRRLR 99	00	
MyoVa	CFRRMMAKRELKKLK 90	7	
	••*••*•*		

Figure S4

В

Figure S5

Figure S6

Figure S7

	# Events	% Stationary	% Diffusive-like	% Directed	Run-length ± SEM (nm)	Velocity ± SEM (nm/s)	Diffusion Coefficient ± error (nm ² /s)
Control	201	11	50	39	715 ± 82	486 ± 19	3135 ± 110
Oryzalin	277	4	54	42	604 ± 57	391 ± 19*	3032 ± 110
Cytochalasin D	80	46	53	1	N/A	N/A	835 ± 53**
Jasplakinolide	70	26	63	11	321 ± 130**	190 ± 12**	1586 ± 63**
LoxP Actin: Untreated	392	15	48	37	622 ± 54	423 ± 13	2176 ± 91
<i>LoxP Actin:</i> Rapamycin Treated	239	33	57	10	240 ± 64**	205 ± 18**	820 ± 71**
LoxP TgMyoF: Untreated	122	32	61	7	813 ± 124	443 ± 22	2203 ± 107
LoxP TgMyoF: Rapamycin Treated	115	12	53	35	198 ± 66**	172 ± 9**	902 ± 61**

Table S1: Summary of results. Asterisks indicates that run-lengths, velocities and diffusion coefficients are significantly lower than control (** = p<0.001) (* = p<0.05).

Primer	Sequence
F1	CGTCGTCGAGTGTATCTACGG
F2	ACTGAGAGTTTCTGTTTTTCCT
R1	TAATGTATGCTATACGAAGTTA
R2	AAGAAGCACTCGAGTCCATTTC
Nhel-SAG1-F	ATGC <u>GCTAGC</u> ATGTTTCCGAAGGCAGTGAGAC
BgIII-SAG1-287R	ATGC <u>AGATCT</u> TGCAGCCCCGGCAAACTCCA
TgMyoF qPCR F	GGAGAGCGGAGCAGGCAAGACAGAAA
TgMyoF qPCR R	TCGGGGAAGGGAAGTAATAGATGC
Tubulin qPCR F	CGCCACGGCCGCTACCTGACT
Tubulin qPCR R	TACGCGCCTTCCTCTGCACCC

 Table S2. Primer sequences. Restriction sites are underlined.