

8

9 Fig. S1: Broad energy XPS survey spectrum of MoS₂ deposited on Si showing a weak but
10 distinct signal of Cl 2p electrons. The presence of Cl as an impurity indicated an n-type doping in
11 MoS₂ samples.

12 The excitonic Bohr radius of MoS_2 has been estimated using the following equation:

14 Where, m_e^* and m_h^* are the effective masses of electrons and holes, respectively, \hbar is the 15 reduced Planck's constant, e is the electronic charge and ϵ is the relative permittivity of MoS₂. 16 The effective masses and the dielectric permittivity have been considering as $m_h^* = 0.41 m_o$ and

- 1 $m_e^* = 0.48m_o$, as m_o is the rest mass of the electrons and ~11, respectively. Using eq S.1, the
- 2 excitonic Bohr radius has been found as \sim 23 nm.
- 3

4

5 Fig. S2: (a) Temperature dependent electroluminescence (EL) spectra of Si/MoS₂ p-n
6 heterojunction, recorded at 30 V applied bias.

Fig. S3: (a) Spectral dependent external quantum efficiency (EQE) and (b) specific detectivity of different size MoS_2 quantum dot based devices exhibits PDs performances have been strongly dependent on the QDs size. All the spectra recorded at -2 V applied bias. The detectivity and the EQE both have been found ~4-fold improves with the reduction of QDs size from ~7 nm to ~2 nm.