

Mutation of DNA Polymerase β R137Q Results in Retarded Embryo Development Due to Impaired DNA Base Excision Repair in Mice

Feiyan Pan^{1,a}, Jing Zhao^{1,a}, Ting Zhou^{1,a}, Zhihui Kuang², Huifang Dai³, Huan Wu¹, Hongfang Sun¹, Xiaolong Zhou¹, Xuping Wu², Zhigang Hu¹, Lingfeng He¹, Binghui Shen³, Zhigang Guo¹*

Supplementary Figure. S1 The protein levels of Pol β in tissues and cell lysate from WT and R137Q. Pol β protein levels were examined by Western blot. Tubulin was immunoblotted as a loading control. (a) Tissue lysate. (b) Cell lysate.

Supplementary Figure. S2 Sensitivity assay in WT, R137Q and Pol β knockout MEFs. 1×10^5 cells per well were plated in triplicate in six well plates, cells were treated or untreated with different dose of MMS or H_2O_2 for 2 hours. After treatment, the cells were washed with PBS and cultured in a fresh media for 3 days. The number of viable cells in every well was determined by trypsinized cells and counting with a cell counter (CountStar IC1000). The control growth ratio was calculated by treated/untreated cell numbers. Pol β knockout MEFs, MEF88. Data represents mean±SD from triplicate wells. The experiments were repeated three times.