A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

Zonglun Liu¹, Kuo Gao², Beng Wang¹, Hui Yan¹, Panfei Xing¹, Chongmin Zhong¹, Yongqian Xu¹, Hongjuan Li¹, Jianxin Chen², Wei Wang² & Shiguo Sun¹

¹College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.
²Beijing University of Chinese Medicine, No.11 Beisanhuandonglu, Chaoyang District, Beijing, 100029, China.

Corresponding author

Correspondence to: Shiguo Sun, sunsg@nwsuaf.edu.cn; Jianxin Chen, cjx@bucm.edu.cn; Wei Wang, wangwei@bucm.edu.cn.

Calculation of the detection limit

The limit of detection (LOD) was calculated according to the formula in the literature. (*Spectroscopy* 2003, 12, 112-114. *Anal. Chem.* 2009, 11, 4555-4559. *Dalton Trans.* 2013, 42, 15113-15119).

$$LOD = \frac{3\sigma}{k}$$

Where σ is the standard deviation of the blank solution measured by 10 times; k is the slope of the calibration curve.

The detection limit was calculated based on the fluorescence titration. Increasing amounts of HClO were added to the probe (10 μ M) in PBS buffer. Representation of fluorescence at the appropriate wavelength vs. concentration of HClO allowed the limit of detection to be calculated. From Figure S7, we get slope k = 0.0313, and σ value is 0.00456. Thus using the formula we get the limit of detection (LOD) = 4.37×10^{-7} M.

Figure S1. Time-dependent luminescence intensity of RuMAZO (10 μ M) at 600 nm treated with HClO (100 μ M) or Cu²⁺ (20 μ M) in HEPES buffer (10 mM, pH 7.4) with $\lambda_{ex} = 465$ nm.

Figure S2. (a) Time-dependent luminescence changes of RuMAZO (10 μ M) or Ruazo (10 μ M) treated with Cu²⁺ (100 μ M) in PBS buffer (10 mM, pH 7.4). (b) Time-dependent luminescence intensity of Ruazo (10 μ M) and RuMAZO (10 μ M) treated with HClO (100 μ M) in PBS buffer (10 mM, pH 7.4) with $\lambda_{ex} = 465$ nm, $\lambda_{em} = 600$ nm.

Figure S3 Time-dependent luminescence intensity of RuMAZO (10 μ M) treated with HClO (100 μ M) or Cu²⁺ (100 μ M) in PBS buffer (10 mM, pH 7.4) with $\lambda_{ex} = 465$ nm, $\lambda_{em} = 600$ nm.

Figure S4 Time-dependent luminescence intensity of Ruazo (10 μ M) treated with HClO (100 μ M) or Cu²⁺ (100 μ M) in PBS buffer (10 mM, pH 7.4) with $\lambda_{ex} = 465$ nm, $\lambda_{em} = 600$ nm.

Kinetics of luminescence enhancement profile

Figure S5. Time-dependent luminescence intensity of Ruazo (10 μ M) at 600 nm treated with various concentrations of HClO in PBS buffer (10 mM, pH 7.4) with $\lambda_{ex} = 465$ nm, $\lambda_{em} = 600$ nm.

UV-Vis absorption spectra of the probe

Figure S6. UV-Vis spectral changes of Ruazo (10 μ M) upon the addition of various concentrations of HClO (0-100 μ M) in a PBS buffer solution (10 mM, pH 7.4).

Luminescence spectra of the probe

Figure S7. A linear correlation between the logarithm of the emission intensity of Ruazo at 600 nm and concentrations of HClO ($0.5-50 \mu$ M).

Figure S8. Luminescence changes of Ruazo (10 μ M) upon the addition of various common cations (100 μ M), anions (100 μ M) or amino acids (100 μ M) in PBS buffer solution (10 mM, pH 7.4). The black bars from 1-14 represent the luminescence responses toward Blank, HClO, AcO⁻, HCO₃⁻, S₂⁻, SO₄²⁻, NO₂⁻, Cl⁻, SO₃²⁻, Cys, Hcy, GSH, Al³⁺, Ba²⁺; the red bars from 1-15 represent addition of various common cations (Ca²⁺, Cd²⁺, Cr³⁺, Fe³⁺, Hg²⁺, K⁺, Li⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺, Co²⁺, Ag⁺, Cu²⁺).

Figure S9. The luminescence intensity of Ruazo (10 μ M) and its titration with HClO (100 μ M) under different pH value (2-13). $\lambda_{ex} = 465$ nm, $\lambda_{em} = 600$ nm.

Figure S10. MS spectrum of the product the probe Ruazo reacted with HClO.

Figure S11. ¹H NMR spectrum of the Rutazo.

Figure S12. Confocal fluorescence images of HClO in HeLa cells. (a) Bright-field image of cells incubated with probe (10 μ M) for 90 min; (d) Bright-field image of cells after treatment with 50 μ M HClO for 10 min and then treatment with 10 μ M probe for 90 min; (b) and (e) Luminescence -field images of the HeLa cells (550–650 nm); (c) and (f) Overlap of bright-field and luminescence. $\lambda ex = 488$ nm.

Figure S13 The luminescence intensity at different concentrations of HClO (0, 20, 30, 40, 50, 60

 $\mu M)$ and the concentration of Ruazo was 10 $\mu M.$

Figure S14. Percentage of HeLa cell viability remaining after cell treatment with Ruazo (the untreated cells were considered to have 100% survival).

Synthesis of Ruazo

Figure S15. Synthesis of Ruazo and the proposed mechanism of response of the probe towards hypochlorous acid.

Figure S16. ¹H NMR spectrum of ligand phen-AZO.

Figure S17. ¹³C NMR spectrum of ligand phen-AZO.

Figure S18. MS spectrum of ligand phen-AZO.

Figure S19. ¹H NMR spectrum of the probe Ruazo.

Figure S20. ¹³C NMR spectrum of the probe Ruazo.

Figure S21. HRMS spectrum of the probe Ruazo.