Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/2/5/e1501372/DC1

Supplementary Materials for

Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation

Jun Tao, Yi-Cheng Ma, Zhong-Shan Yang, Cheng-Gang Zou, Ke-Qin Zhang

Published 6 May 2016, *Sci. Adv.* **2**, e1501372 (2016) DOI: 10.1126/sciadv.1501372

The PDF file includes:

- fig. S1. LC-MS/MS detection of octopamine contents in worms.
- fig. S2. TLC analysis of total lipids extracted from worms.
- fig. S3. Overexpression of *tbh-1* enhances lipid hydrolysis in well-fed wild-type worms.
- fig. S4. Starvation does not alter the expression of *atgl-1*.
- fig. S5. A mutation in *tbh-1(n3247)* does not affect the expression of *fil-1* or *fil-2* in starved worms.
- fig. S6. Knockdown of *lips-6* by RNAi leads to reduced *lips-6* expression.
- fig. S7. Overexpression of *lips-6* in the intestine promotes lipid hydrolysis in well-fed WT worms.
- fig. S8. Octopamine fails to restore lipid hydrolysis and expression of *lips-6* in *ser-3(ad1774)* mutants during starvation.
- fig. S9. SER-3 in the neurons and muscle is not involved in lipid hydrolysis during starvation.
- fig. S10. SER-3 is involved in resistance to starvation.
- table S1. ChIP-qPCR analysis of the *tbh-1* promoter.

Supplementary Figures

fig. S1. LC-MS/MS detection of octopamine contents in worms. Representative chromatograms of (A) well-fed wild-type (WT) worms, (B) starved WT worms, (C) well-fed *daf-12(rh61rh411)* mutants, (D) starved *daf-12(rh61rh411)* mutants, (E) well-fed *din-1(dh127)* worms, (F) starved *din-1(dh127)* worms, and (G) octopamine standard. cps, counts per second. Black arrows indicate the octopamine-specific peaks.

fig. S2. TLC analysis of total lipids extracted from worms. WT. wild-type worms; *tbh-1, tbh-1(n3247)*; *ser-3, ser-3(ad1774)*; *ser-6, ser-6(tm2146)*; *octr-1, octr-1(ok371)* mutants. CE, cholesterol ester; TAG, triacylglycerol; PL, phospholipids.

fig. S3. Overexpression of *tbh-1* enhances lipid hydrolysis in well-fed wild-typeworms. The right panel represents relative Oil Red O intensity. EV, empty vector.*P<0.05.

fig. S4. Starvation does not alter the expression of *atgl-1*. (A) The mutation in *atgl-1(tm3116)* led to lipid accumulation in starved worms. The right panel represents relative Oil Red O intensity. ^aP < 0.05 versus well-fed wild-type (WT) worms; ^bP < 0.05 versus starved WT worms. (B) mRNA levels of *atgl-1*. (C) Fluorescence microscopy of *Patgl-1::atgl-1::GFP*. The right panel shows quantification of GFP levels.

fig. S5. A mutation in *tbh-1(n3247)* does not affect the expression of *fil-1* or *fil-2* in starved worms. WT, wild-type worms; NS, not significant.

fig.

S6. Knockdown of *lips-6* by RNAi leads to reduced *lips-6* expression. EV, empty vector. **P < 0.01.

fig. S7. Overexpression of *lips-6* in the intestine promotes lipid hydrolysis in well-fed WT worms. The right panel represents relative Oil Red O intensity. EV, empty vector. *P<0.05.

fig. S8. Octopamine fails to restore lipid hydrolysis and expression of *lips-6* in *ser-3(ad1774)* mutants during starvation. (A) Oil Red O staining. The right panel represents relative Oil Red O intensity. (B) mRNA levels of *lips-6*.

fig. S9. SER-3 in the neurons and muscle is not involved in lipid hydrolysis during starvation. (A and B) Neuronal-specific RNAi of *ser-3* (TU3401) did not alter lipid hydrolysis (A) and expression of *lips-6* (B). The right panel represents relative Oil Red O intensity. (C and D) Muscular-specific RNAi of *ser-3* (NR350) did not alter lipid hydrolysis (C) and expression of *lips-6* (D). The right panel represents relative Oil Red O intensity. EV, empty vector.

fig. S10. SER-3 is involved in resistance to starvation. A mutation in *ser-3(ad1774)* led to reduced rate of survival after three days of starvation. However, expression of *ser-3* in the intestine significantly suppressed the sensitivity of *ser-3(ad1774)* mutants to starvation. ^aP < 0.05 versus wild-type (WT) worms; ^bP < 0.05 versus *ser-3(ad1774)* worms.

Distances to ATG		Items	Mean ct	∆ct	∆∆ct	2-2act
-4139	1	Fed	21.62	11.42	0	
		Input	10.2			1
		Fasted	21.24	9.54	-1.88	3.68
		Input	11.7			
	2	Fed	20.96	10.53	0	1
		Input	10.43			
		Fasted	21.75	8.98	-1.55	2.93
		Input	12.77			
	3	Fed	22.08	11.05	0	1
		Input	11.03			
		Fasted	21.21	9.23	-1.82	3.53
		Input	11.98			
-3193	1	Fed	21.98	10.44	0	1
		Input	11.54			
		Fasted	20.51	9.18	-1.26	2.39
		Input	11.33			
	2	Fed	22.23	10.44	0	1
		Input	11.79			
		Fasted	21.29	9.44	-1	2
		Input	11.85			
	3	Fed	21.59	10.64	0	1
		Input	10.95			
		Fasted	20.95	9 34	-13	2 46
		Input	11.61	2.54	1.5	2.40
-2711	1	Fed	20.31	10.29 8.45	0 -1.84	1 3.58
		Input	10.02			
		Fasted	18.84			
		Input	10.39			
	2	Fed	20.65	10.43 8.71	0	1
		Input	10.22			
		Fasted	19		-1.72	3.29
		Input	10.29			
	3	Fed	20.51	10.06	0	1
		Input	10.45			
		Fasted	17.89	79	-2.16	4 47
		Input	9.99	1.7	2.10	1. 77

table S1. ChIP-qPCR analysis of the *tbh-1* promoter.