Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/2/5/e1501033/DC1

Supplementary Materials for

Mutation at a distance caused by homopolymeric guanine repeats in *Saccharomyces cerevisiae*

Michael J. McDonald, Yen-Hsin Yu, Jheng-Fen Guo, Shin Yen Chong, Cheng-Fu Kao, Jun-Yi Leu

Published 27 May 2016, *Sci. Adv.* **2**, e1501033 (2016) DOI: 10.1126/sciadv.1501033

This PDF file includes:

- fig. S1. Expansion of the polyguanine repeat (G_{14} to G_{15}) reduces the Ura3 protein abundance but not the mRNA level.
- fig. S2. G_{11} to G_{14} sequences do not stop DNA polymerase from synthesizing DNA, whereas G-quadruplex does.
- Legend for table S1
- table S2. Chromosome insertion position and replication timing for engineered G_{14} -URA inserts.
- References (66, 67)

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/2/5/e1501033/DC1)

• table S1 (Microsoft Excel format). Summary table of 318 sequenced *ura3* mutants from G_0 , G_{14} -ORF, and G_{14} -repeat strains.

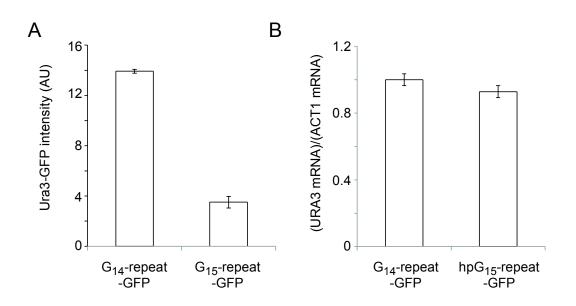


fig. S1. Expansion of the polyguanine repeat (G_{14} to G_{15}) reduces the Ura3 protein abundance but not the mRNA level. (A) The URA3 gene was tagged with GFP in the G_{14} -repeat and G_{15} -repeat strains. Ura3-GFP intensity was used to represent the protein level and measured using the fluorescence activated cell sorter. (B) mRNA levels were measured using quantitative PCR.

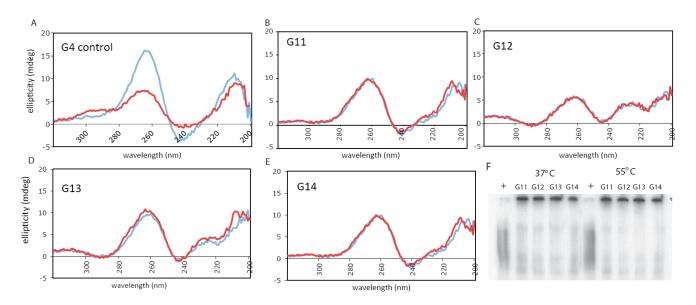


fig. S2. *G*₁₁ to *G*₁₄ sequences do not stop DNA polymerase from synthesizing DNA, whereas G-quadruplex does. (A-E), We analyzed the structures formed by *G*₁₁, *G*₁₂, *G*₁₃ and *G*₁₄ oligos incubated in the presence of two ions, K⁺ and Na⁺. Incubating potential G-quadruplex forming oligos in the presence of either Na⁺ or K⁺ ions leads to the formation of different structures which can be detected by circular dichroism. K⁺ is the preferred ion and

leads to conformationally distinct, stable structures with higher peaks [66, 67]. The peaks observed for the control G-quadruplex structure showed a distinct increase in stability in the presence of K⁺ ions compared to Na⁺, recapitulating the results of previous work using this same G-quadruplex [50]. However, the G_{11-14} sequences all showed a lesser peak than the control G-quadruplex, showing no consistent differences between different lengths of G (G_{11} formed just as high a peak as G_{14}), and K⁺ ions did not induce a different or more stable structure compared to Na⁺ ions. These combined results suggest that G-quadruplexes are not the causative agent of G_{13+} induced mutagenesis. F, DNA polymerase stop assays were performed on templates containing either a known G-quadruplex forming sequence or homopolymeric G repeats of 11-14 nucleotides. The G-quadruplex forming sequence acts a positive control (lanes labeled "+"), showing that G-quadruplex formation blocks DNA synthesis in this assay. The templates containing G_{11-14} were synthesized across, supporting that these sequences do not form G-quadruplex structures. The assay was carried out at 37°C and 55°C to test for potential heat lability of structures.

table S1. Summary table of 318 sequenced *ura3* mutants from *G*₀, *G*₁₄-*ORF*, and *G*₁₄-*Repeat* strains.

	01	D	Trep	D 1
Gene	Chr.	Position	(min)	Direction
YLR090W	XII	320701→322080	38	against replication
YLR093C	XII	326513→327415	36	with replication
YLR098C	XII	337527→339473	32	with replication
YLR108C	XII	366667→368124	18	against replication
YOLO25W	XV	274957→276939	12	with replication
YORO32C	XV	389771→391075	36	against replication

table S2. Chromosome insertion position and replication timing for engineered G_{14} -URA inserts.