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section S1. Experimental schematics 

 

As stated in the main text, our THz pulses are generated and detected within a Terahertz time-

domain spectrometer (THz-TDS) (43, 44). The fundamental layout of the setup is shown in fig. S1. 

In its essence, a beam of femtosecond optical pulses is split into three beams: generation, 

detection and excitation. The first is used to generate a picosecond THz pulse, we use optical 

rectification in a ZnTe crystal (45), which then passes through the sample under investigation. Our 

THz beam is collimated and collected by 90° off-axis parabolic mirrors made from aluminum, both 

with a 2.5 cm focal length and 2.54 cm diameter. The second beam is used to detect the time 

profile of the THz waveform. This is achieved by temporally overlapping the much longer THz pulse 

with the very short detection pulse. The difference in pulse durations, allows one to discretely 

sample the terahertz temporal profile by varying the path lengths with an optical delay line (typical 

THz transient and detection pulse envelope shown in fig. S2A). The electric field amplitude is 

extracted via electro-optic sampling in a ZnTe crystal (46). The third beam is used to photoexcite 

the sample. Additionally, our excitation beam is spatially modulated via a digital micromirror device 

(DMD) and a lens so as to project any binary pattern onto our sample.  

 

We use a single +7.5 cm focal length lens to project the binary patterns from the DMD onto our 

silicon, with a magnification of -0.66. Our DMD (DLP3000 used on a DLP Lightcrafter from Texas 

Instruments) has square mirrors of size 15.2 µm, hence we are limited to projecting squares of size 

~10 µm. Using the Rayleigh lens formula, θ = 1.22λ/D, our 800nm pulses have a diffraction limited 

resolution of ~5.4 µm at our imaging plane. 

 

 

fig. S1. Schematic of time domain THz spectrometer. A beam of ultrashort optical pulses leave an 

ultrafast laser. The beam is split into three beams: generation, detection and excitation. A chopper is placed 

in the detection or generation beams, depending on the needs of the experiment. Parabolic mirrors are used 

to collect and collimate the THz radiation.  



section S2. The silicon photomodulator 

 

We photoexcitate electron-hole pairs in silicon using ultrafast (90 fs) pulses with a wavelength of 

800nm. The photoexcited dielectric function of silicon can be described by the Drude model (37, 

47) 

          (1) 

 

where εb=11.7 is the background dielectric permittivity due to the bound electrons, τc is the average 

collision time with typical values τc≈0.5 ps for the excitation energies used here (47), ωp is the 

plasma frequency defined as ωp
2
=nce

2
/ε0m* with e being the electron charge, ε0 free space 

permittivity and m*=0.26me(0.37me) the effective mass of electrons (holes) (48). 

 

The primary modulating parameter in the equation above is the density of carriers, nc. Carriers are 

generated by pulses running at a repetition period of 1ms, considerably longer than the silicon 

carrier lifetimes of ~25 µs (49), thus we neglect sample heating. Moreover, since the THz pulse 

arrives ~5 ps after photoexcitation, as shown in fig. S2C, we can also neglect carrier recombination 

and diffusion. The key variable to determine is therefore the mean carrier-carrier distance. For the 

5 ps in-between photoexcitation and the arrival of the THz pulse, we can calculate the mean 

square displacement of carriers, <x2>=6Dt, where D is the diffusion coefficient of our electron 

(hole) charge carriers. We use the Einstein–Smoluchowski relation, D=µqkBT/q, where µq is the 

mobility of charge carriers given by µq=qτc/m* (50), to obtain mean displacements of √<x2>=506 

nm(425 nm) for our photo-electrons (holes). Since the diffusion lengths are considerably smaller 

than the penetration depth of the photoexcitation light (~11 µm (51)), we can neglect carrier 

diffusion from our considerations. The carrier density is then given directly by the absorbed photon 

density. This gives nc=2Ρρ/dħωl where Ρ is our pulse energy per unit area (104 µJ/cm2), ρ=0.7 is 

the Fresnel transmittance of Si at our excitation wavelengths, ħωl is the photon energies of the 

pump light, d is the penetration depth (d≈11 µm (51) for our wavelengths) and the factor of 2 

accounts for the electron-hole pair. 

 

Entering these values, we obtain a plasma frequency of 81THz with ε(1THz) = -138+ 48i for our 

photoexcited silicon. In other words, we generate a THz material with a negative real and positive 

imaginary part to the dielectric function, the characteristics of a lossy conductor.  

 



 

fig. S2. THz spectroscopy. (A) Blue: typical THz pulse detected by our system. Red: envelope of detection 

pulse used to discretely sample the THz waveform. Measurement arrow points to the THz amplitude we 

detect for each individual mask readout. Oscillations after main THz pulse are due to water vapor in the 

background environment. (B) Fourier spectrum of the THz pulse with water vapor oscillations zeroed out. (C) 

Modulated THz transmission due to the photoexcitation of a silicon wafer normalized to the THz 

transmission. Measurement arrow indicates where the measurements are made with respect to silicon 

photoexcitation (~5 ps after). 

 

 

section S3. Single pixel detector imaging theory 

 

The THz regime has the problem that detector arrays are difficult and expensive to manufacture 

(3), hence the need for imaging with single pixel detectors. The disadvantage to single pixel 

imaging is that it typically requires longer acquisition time compared to focal plane imaging arrays, 

due to the measurements being taken sequentially rather than in parallel. Here we are concerned 

with obtaining the spatial transmission function of some object using a single pixel THz detector. 

The simplest solution is to raster scan a single aperture to obtain the transmissivity pixel by pixel. 

However, if this aperture is made smaller and smaller, the detected signal is reduced and 

eventually one will run into detector noise.   

 

One could sample more than one aperture simultaneously to increase the detected signal level in 

order to overcome detector noise, an idea which seems to first originate in 1935 with Yates (52). To 

do this, however, introduces extra calculation difficulties as the measured intensity is due to the 

sum of the scanning apertures. Therefore, the locations of the scanning apertures in each 

measurement must form a set of simultaneous equations which can be solved exactly for the 

individual pixels of the object’s transmission function. The information regarding the location of the 

scanning apertures is held in mask configurations.  

 

We now consider the construction of an N-pixel image Ψ. Our ith measurement, ϕi, is the dot 

product of our object transmission function and the ith mask configuration, mathematically 

expressed as 



         (2) 

 

where wij holds the spatial information of the ith mask  and j is the jth pixel of the image. As stated 

in the main text, this can be represented by the matrix equation Φ=WΨ, where the rows of W are 

reformatted into the projected masks. For invertible matrices W, the image vector Ψ can be 

obtained through matrix inversion Ψ=W
-1

Φ, which finally has to be reshaped into a 2D matrix of 

pixel values. Futher, the matrix equation Φ=WΨ represents the image being expanded in some 

basis given by W. For this study we mainly use Hadamard matrices as our basis expansion, ie. W is 

a Hadamard matrix of order N (26). A Hadamard matrix Hn is defined as an n×n matrix of +1 s and 

-1 s with the property that the scalar product between any two distinct rows is 0 ie. each row is 

orthogonal to every other one. Thus Hn must satisfy 

 

       (3) 

 

where Hn
T
 is the transpose of Hn. This is a property that allows for easy image reconstruction as it 

is easy to see that Hn
-1 =Hn

T
/n. A more serious reason to construct masks from Hadamard matrices 

is that this basis minimizes the mean square error of each pixel in our image (26). 

 

We have opaque masks that either block or transmit light ie. W contains only values of 1 s and 0 s 

and thus it is not a Hadamard matrix. However as outlined in (38), it is possible to obtain a fully 

orthogonal measurement matrix with such a system. Consider the H2 matrix 

 

       (4) 

 

The problem is that our measurement matrices can only have values of 1 and 0 corresponding to 

the mirrors being on or off respectively, but if we consider the following two matrices 

 

      (5) 

 

it is easy to see that H2=G-V. Thus if we have two sets of measurement vectors each using one of 

the complementary sets of masks 

 

         (6) 

 

then subtraction of the second set gives the desired encoding matrix. This doubles the number of 

measurements required. However, if the complementary negative mask is projected immediately 

after its positive counterpart, one can eliminate an unwanted source of noise, namely low 

frequency source oscillations. In fig. S3, we compare the difference between using encoding 

masks derived from Hadamard matrices with [1, -1] and [1, 0] values. Here we can see that the 

image constructed from [1, 0] measurement has some artifacts created from low frequency THz 

source oscillations (indicated by the arrows), whereas the [1, -1] measurement have eliminated 

most of this type of artifact. 



 

fig. S3. [1, –1] versus [1, 0] masks. Image obtained using Hadamard masks with values of [1, -1] in (A) and 

[1, 0] in (B). Total number of measurements is 16384 for both pictures. 

 

 

section S4. Scalar diffraction from two slits 

 

As stated in the main text, the resolution of our imaging technique is limited by the thickness of our 

silicon photomodulator (115 µm). To calculate the diffraction in our system, we follow the method 

outlined in (39). Therein, Kowarz solves the 2D Helmholtz equation for positive z-space with all 

scatterers, sources and diffracting apertures being located in negative z-space. His electric field 

solution U(x,z) is the sum of two parts, a homogeneous propagating contribution Uh(x,z) and an 

evanescent component Ui(x,z) 

 

           (7) 

 

           (8) 

 

where k is the free space wavenumber, ux is the directional wavevector in x and A(ux) is a spectral 

amplitude function that is the Fourier transform of scatterer’s field distribution in the plane z=0, ie 

 

      (9) 

 

This notation is known as the angular spectrum representation (53). We calculate the diffracted 

intensity distribution generated by two parallel slits with a field distribution given by 

 

       (10) 

 

where rect is the rectangle function (54), d is the slits width, a is the slits’ center to center separation 

and K is the incident wave amplitude. We are interested the intensity distribution, defined as 

I(x,z)≡|U(x,z)|
2
=|Uh(x,z)+Ui(x,z)|

2
, for various slit separations. To model our system more accurately, 

we sum all the frequency contributions of our pulses, with each frequency component weighted by 

our pulse spectrum (Fig. 2B) and a wavelength corresponding to our silicon dielectric. 

 



In fig. S4 we plot the intensity distribution, on a parallel plane at a distance equal to our modulator 

thickness (115 µm), from two 20 µm slits for various slit separations. For separations <65 µm, the 

diffraction pattern is similar to that of a single slit. As the separation increases, the diffraction 

maxima arising from each slit become distinguishable. The white dashed line indicates the 

separation resolvable by the Rayleigh resolution criterion (55), corresponding to a resolution of ~95 

µm which is well in agreement with our experimental estimate of 103(±7)µm. 

 

 

fig. S4. Diffraction from two slits. Intensity distribution (horizontal axis) from a slits as they separated apart 

(vertical axis). We plot the sum total intensity from an ensemble of spectrally weighted components that 

constitute our pulses (refer to experimental section for pulse spectrum). d=20 µm, z=115 µm in calculation. 

 

 

section S5. Signal with increasing number of pixels 

 

Here we investigate how experimental noise affects the three different masking schemes, outlined 

in the main text, as the number of pixels in the image is increased. For this, we take images under 

identical conditions (one after the other) of the circuit board in Fig. 3A with increasing number of 

pixels. Our results are shown in fig. S5. As shown in the main text, Hadamard masks have the 

most superior signal to noise followed by random masks and then by raster scanning. This is true 

for all image sizes. Raster scanning is most affected by detector noise due to the small signals 

emanating from a single aperture. On decreasing the aperture size, and increasing the number of 

pixels, image noise clearly increases. This effect is less significant for the multi-pixel approaches 

as these have larger associated signals. While multi-pixel patterns clearly have the benefit of 

increased signal to noise, the continual increase in the number of pixels leads to increased image 

noise, even for Hadamard imaging. This is because the signal from each individual pixel decreases 

as the number of pixels increase, and even though Hadamard matrices minimize the mean square 

error in each image pixel (26) they do not completely remove all noise. One should also note that 

we have noise in our THz source which further degrades image quality as the number of 

measurements required to form the image increases. Interestingly, random masks seem to fair 

best as the number of pixels increases. It can easily be shown that is an artefact caused by the 

simple reconstruction algorithm employed. 

 



 

fig. S5. Increasing image size. (A to C) Images obtained using raster masks with increasing number of 

pixels from 32×32 to 64×64 and 128×128, respectively. (D to I) Images obtained using random (Hadamard) 

masks as number of pixels is increased from 32×32 to 64×64 and 128×128, respectively. The vertical lines 

seen in part (C) are associated with periodic changes in lab environment. Note (A, B, and C) have been 

scaled by 0.9, 0.25 & 0.1, respectively, so as to be plotted on the same scale as all other images. 

 

 

section S6. Total variation minimization reconstruction 

 

As stated in the main paper, we reconstruct our random mask images via a very simple algorithm 

where we sum the random masks with each one weighted by the detector readout for that mask. 

We use this simple algorithm due to its quick calculation times (~100 ms) and for the Hadamard 

case it recovers the exact solution. However, the idea of using masks constructed from random 

matrices originates from compressed sensing (27) where one usually minimizes the L1-norm of the 

vector (image in our case) that one wishes to sample in order to recover the correct solution. To 

obtain our images, we perform a total variation (TV) minimization. In other words, the mathematical 

problem is stated as 

     (11) 



where W is our random measurement matrix,  is our vector of measurements,  is the image we 

are interested in,  is a variation relaxation parameter allowing us to determine how smooth the 

final image is and TV is the total variation of a 2D image defined as 

 

                       (12) 

 

where x is a 2D image and Dh,v are the discretized gradient operators along the horizontal and 

vertical directions respectively. Our calculations were performed in Matlab 2013b using the L1-

magic package. 

 

This algorithm is more complicated (taking us ~100 s), however with it we obtain an image that has 

a significantly better signal to noise ratio as shown in fig. S6. Here, we see that Hadamard is still 

superior. This is partly due to the fact that Hadamard matrices minimize the mean square error in 

each image pixel (26) and partly due to the value of our relaxation parameter. In other words, we 

could further improve the quality of our random mask image with more careful considerations of 

our value for . 

 

 

 

 

fig. S6. Total variation minimized images. 64×64 images of a circuit board where (A) and (B) have been 

obtained using random masks except (A) was constructed using our simple algorithm and (B) has been 

constructed via a total variation minimization algorithm from the same data. (C) Image of the same circuit 

board obtained via Hadamard masks. 

 

 

section S7. Image filtering 

 

In fig. S7A-D we show THz images of certain sections of the manufactured circuit board (see Fig. 

3A for design). With these images we show that it is possible to observe, using the strong 

polarization effects shown in Fig. 4, highly subwavelength (8 µm) breaks along the conducting 

wires. Upon close investigation of fig. S7, one can see the breaks manifesting as small localized 

increases in field amplitude. However, due to the noise embedded in the measurement this is not 

immediately obvious. 

 

The experimental errors were minimized and a total of ~2650 pulses were utilized for each 

measurement, which results in rather noisy images (fig. S7A-D). Hence we are left to reduce the 

noise in our images via post-processing. For this, we employ a spatial Fourier filter and a spatial 



curvature denoising algorithm (outlined below). For Fourier filtering we use a Gaussian lowpass 

filter of size 15 with a standard deviation of 1.1, as implemented by the 'fspecial' command in 

MATLAB. These parameters were subjectively chosen based on subjective image quality. In 

contrast, the denoising algorithm, as outlined below and in (42), has no subjective input. 

 

Our noise is embedded within the spatial-curvature of our images. If we minimize the spatial-

curvature, then the noise will also be minimized. However, we do not want to remove image 

features not due to noise, thus we have to put a constraint to limit the minimization. The constraint 

should also be chosen to reflect the nature of the noise to be filtered; Gaussian noise in our case. 

For this reason, we look at the square of the difference between our denoised and original images. 

The denoised image is obtained by minimization of its cost function, C, given by 

 

   (13) 

 

where Ψ′ is the image vector expressed in 2D format, σs is the standard deviation of the noise in the 

measurement of ϕi. The first term in eq. (13) represents a χ
2
/N distribution of the image with respect 

to the measured data, and the second term represents the total spatial-curvature of the image. λ is 

the regularization parameter dictating the level of smoothing: larger values lead to smoother 

denoised images. The algorithm starts with a value of λ=1 and automatically increases this value to 

ensure that, once optimized, χ
2
/N ≈1. 

 

In fig. S7E-L we show the raw images in fig. S7A-D filtered by the two methods outlined above. 

Both methods considerably improve the looks of the images, and more importantly they preserve 

the features we wish to show: the breaks manifesting as small localized increases in amplitude.  



 
fig. S7. Unfiltered and filtered images. (A and B) Image of Break A and B, respectively, with horizontal 

polarization. (C and D) Image of Break A and B, respectively, with vertical polarization. (E to L) Fourier 

filtered (denoised) images of Breaks A and B from parts (A to D) respectively.  Number of pixels is 64×64 with 

each pixel being 20 µm in size for all images. 




