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SUPPLEMENTARY INFORMATION 

We provide complete mathematical details for the definition and calculation of thermal transmissivity and 
emissivity for planar systems. We also provide additional modeling details, figures and discussion for the 
optimization of previously studied topologies and their comparison to currently proposed ones. 

  

                                                           
1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 
Correspondence: Aristeidis Karalis, Email: aristos@mit.edu, Phone: +1 (617) 253-6798 



METHODS 
Fluctuation-Dissipation Theorem (FDT)1 and Poynting’s Theorem (PT)2 
Consider an isotropic object of relative dielectric permittivity 𝜀𝜀 = 𝜀𝜀′ + i𝜀𝜀′′, that can absorb photons, 
namely 𝜀𝜀′′ > 0 [for exp(−𝑖𝑖𝑖𝑖𝑖𝑖) convention]. If it is brought at an absolute temperature 𝑇𝑇 and optionally 
has a voltage 𝑉𝑉 across it, FDT states that its thermally excited, randomly fluctuating atoms/molecules can 
be modeled as current sources 𝐉𝐉(𝐫𝐫,𝜔𝜔), with spatial correlation function 

 〈𝐽𝐽𝛼𝛼(𝜔𝜔, 𝐫𝐫)𝐽𝐽𝛽𝛽(𝜔𝜔, 𝐫𝐫′)〉 =
𝜔𝜔𝜀𝜀𝑜𝑜𝜀𝜀′′(𝜔𝜔, 𝐫𝐫)

𝜋𝜋
ℏ𝜔𝜔Θ𝑉𝑉𝑉𝑉(𝜔𝜔) ∙ 𝛿𝛿(𝐫𝐫 − 𝐫𝐫′)𝛿𝛿𝛼𝛼𝛼𝛼 (S1) 

where Θ𝑉𝑉𝑉𝑉(𝜔𝜔) = 1 {exp[(ℏ𝜔𝜔 − 𝑞𝑞𝑞𝑞) 𝑘𝑘𝐵𝐵𝑇𝑇⁄ ]− 1}⁄  is the mean number of generated photons of frequency 
𝜔𝜔 in thermo-chemical quasi-equilibrium3 at voltage 𝑉𝑉 and temperature 𝑇𝑇, 𝜀𝜀𝑜𝑜 is the permittivity of free 
space, ℏ is the Planck constant divided by 2𝜋𝜋, 𝑞𝑞 is the electron charge, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 
𝛿𝛿(𝐫𝐫′ − 𝐫𝐫′′) is the Dirac delta function and 𝛿𝛿𝛼𝛼𝛼𝛼 is the Kronecker delta. In Θ, the additional vacuum-
fluctuations term 1/2 is omitted, as it does not affect the energy exchange between objects. 

PT states energy conservation: the electromagnetic power absorbed inside a volume 𝑉𝑉 is equal to 
that generated due to sources 𝐉𝐉 in 𝑉𝑉 minus that exiting the enclosing surface area 𝐴𝐴: 

 � 𝑑𝑑𝐫𝐫 
𝜔𝜔𝜀𝜀𝑜𝑜𝜀𝜀′′
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|𝐄𝐄|2

𝑉𝑉
= � 𝑑𝑑𝐫𝐫 ∙

1
2

 Re{−𝐄𝐄 ∙ 𝐉𝐉∗}
𝑉𝑉

− � 𝑑𝑑𝐀𝐀 ∙
1
2

Re{𝐄𝐄 × 𝐇𝐇∗}
𝐴𝐴

 (S2) 

Definition of thermal transmissivity for planar systems 
The power absorbed by an object 𝑖𝑖, at 𝑇𝑇𝑖𝑖 = 0, due to the thermal current-sources inside another object 
𝑗𝑗, at 𝑇𝑇𝑗𝑗 ≠ 0 and with optionally 𝑉𝑉𝑗𝑗 ≠ 0 across it, is 𝑃𝑃𝑖𝑖𝑖𝑖 = ∫ 𝑑𝑑𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) 2𝜋𝜋⁄∞

0 , where the time-averaged 
power per unit frequency 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) is identified in PT [Eq.(S2)] as 

 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) = 4 ∙
𝜔𝜔𝜀𝜀𝑜𝑜

2
� 𝑑𝑑𝐫𝐫𝑖𝑖
𝑉𝑉𝑖𝑖

𝜀𝜀𝑖𝑖′′(𝜔𝜔, 𝐫𝐫𝑖𝑖)〈𝐸𝐸𝑖𝑖,𝛾𝛾(𝐫𝐫𝑖𝑖) ∙ 𝐸𝐸𝑖𝑖,𝛾𝛾∗ (𝐫𝐫𝑖𝑖)〉 (S3) 

A factor of 4 has been added in 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔), since only positive frequencies are considered in the Fourier 
decomposition of the time-dependent fields into frequency-dependent quantities4. The fields 𝐄𝐄𝑖𝑖(𝐫𝐫𝑖𝑖) and 
𝐇𝐇𝑖𝑖(𝐫𝐫𝑖𝑖) due to the sources 𝐉𝐉𝑗𝑗�𝐫𝐫𝑗𝑗� can be calculated via the Green’s functions 𝐆𝐆𝐸𝐸,𝐻𝐻�𝜔𝜔; 𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗� 

 �𝐄𝐄𝑖𝑖
(𝐫𝐫𝑖𝑖)

𝐇𝐇𝑖𝑖(𝐫𝐫𝑖𝑖)
� = � 𝑑𝑑𝐫𝐫𝑗𝑗 � 

i𝜔𝜔𝜇𝜇𝑜𝑜𝐆𝐆𝐸𝐸�𝜔𝜔; 𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗�
𝐆𝐆𝐻𝐻�𝜔𝜔; 𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗�

� ∙ 𝐉𝐉𝑗𝑗�𝐫𝐫𝑗𝑗�
𝑉𝑉𝑗𝑗

 (S4) 

where 𝜇𝜇𝑜𝑜 is the magnetic permeability of free space. Using Eq.(S4), Eq.(S3) can be written 

 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) = 4 ∙
𝜔𝜔𝜀𝜀𝑜𝑜(𝜔𝜔𝜇𝜇𝑜𝑜)2

2
� 𝑑𝑑𝐫𝐫𝑖𝑖
𝑉𝑉𝑖𝑖

𝜀𝜀𝑖𝑖′′(𝜔𝜔, 𝐫𝐫𝑖𝑖) 〈� 𝑑𝑑𝐫𝐫𝑗𝑗 𝐺𝐺𝛾𝛾𝛾𝛾𝐸𝐸 �𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗�𝐽𝐽𝑗𝑗,𝛼𝛼�𝐫𝐫𝑗𝑗�
𝑉𝑉𝑗𝑗

� 𝑑𝑑𝐫𝐫𝑗𝑗′ 𝐺𝐺𝛽𝛽𝛽𝛽𝐸𝐸∗�𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗′�𝐽𝐽𝑗𝑗,𝛽𝛽
∗ �𝐫𝐫𝑗𝑗′�

𝑉𝑉𝑗𝑗
〉 (S5) 

Using the FDT from Eq.(S1), 

 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) =
ℏ𝜔𝜔
2𝜋𝜋

Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔) ∙ 4𝑘𝑘𝑜𝑜4 � 𝑑𝑑𝐫𝐫𝑖𝑖
𝑉𝑉𝑖𝑖

𝜀𝜀𝑖𝑖′′(𝜔𝜔, 𝐫𝐫𝑖𝑖)� 𝑑𝑑𝐫𝐫𝑗𝑗 𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝐫𝐫𝑗𝑗�
𝑉𝑉𝑗𝑗

𝐺𝐺𝛾𝛾𝛾𝛾𝐸𝐸 �𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗�𝐺𝐺𝛼𝛼𝛼𝛼𝐸𝐸∗�𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗� (S6) 

where 𝑘𝑘𝑜𝑜 = 𝜔𝜔�𝜀𝜀𝑜𝑜𝜇𝜇𝑜𝑜 = 𝜔𝜔/𝑐𝑐 is the wavevector of propagation and 𝑐𝑐 the speed of light, in free space. 



Consider now a planar system (uniform in 𝑥𝑥𝑥𝑥) of 𝑁𝑁 layers (stacked in 𝑧𝑧) of dielectric permittivities 
𝜀𝜀𝑛𝑛 and thicknesses 𝑑𝑑𝑛𝑛. Then, 𝐆𝐆𝐸𝐸,𝐻𝐻�𝜔𝜔; 𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗� can be written via their Fourier transforms 

 𝐆𝐆𝐸𝐸,𝐻𝐻�𝜔𝜔; 𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗� = �
𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦
(2𝜋𝜋)2 𝐠𝐠𝐸𝐸,𝐻𝐻�𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥; 𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗�𝑒𝑒i𝑘𝑘𝑥𝑥𝑥𝑥+i𝑘𝑘𝑦𝑦𝑦𝑦 (S7) 

where 𝑘𝑘𝑥𝑥𝑥𝑥 = �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2. Then in Eq.(S6), if 𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 and 𝑘𝑘𝑥𝑥′ ,𝑘𝑘𝑦𝑦′  are the integration variables for the two 𝐆𝐆𝐸𝐸 
instances, the integral ∫𝑑𝑑𝑥𝑥𝑗𝑗𝑑𝑑𝑦𝑦𝑗𝑗  gives 𝛿𝛿(𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑥𝑥′ )𝛿𝛿�𝑘𝑘𝑦𝑦 − 𝑘𝑘𝑦𝑦′ � and the integral ∫𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑦𝑦𝑖𝑖  gives the (large) 

transverse system area 𝐴𝐴. Using also ∬ 𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦
+∞
−∞ = 2𝜋𝜋 ∫ 𝑘𝑘𝑥𝑥𝑥𝑥𝑑𝑑𝑘𝑘𝑥𝑥𝑥𝑥

∞
0 , the power per unit area becomes 

𝑃𝑃𝑖𝑖𝑖𝑖
𝐴𝐴

= �
𝑑𝑑𝑑𝑑
2𝜋𝜋

∞

0
ℏ𝜔𝜔Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔) 4𝑘𝑘𝑜𝑜4� 𝑑𝑑𝑧𝑧𝑖𝑖

𝑑𝑑𝑖𝑖
𝜀𝜀𝑖𝑖′′(𝜔𝜔, 𝑧𝑧𝑖𝑖)� 𝑑𝑑𝑧𝑧𝑗𝑗  𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝑧𝑧𝑗𝑗�

𝑑𝑑𝑗𝑗
�

𝑘𝑘𝑥𝑥𝑥𝑥𝑑𝑑𝑘𝑘𝑥𝑥𝑥𝑥
2𝜋𝜋

∞

0
𝑔𝑔𝛾𝛾𝛾𝛾𝐸𝐸 �𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗�𝑔𝑔𝛼𝛼𝛼𝛼𝐸𝐸∗�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗� (S8) 

We define the thermal transmissivity of photons from layer 𝑗𝑗 to layer 𝑖𝑖, 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�, via the net 
power per unit area absorbed by 𝑖𝑖 due to thermal sources in 𝑗𝑗, when 𝑇𝑇𝑖𝑖 = 0: 

 
𝑃𝑃𝑖𝑖𝑖𝑖
𝐴𝐴

= �
𝑑𝑑𝑑𝑑
2𝜋𝜋

∞

0
ℏ𝜔𝜔Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔)�

𝑘𝑘𝑥𝑥𝑥𝑥𝑑𝑑𝑘𝑘𝑥𝑥𝑥𝑥
2𝜋𝜋

∞

0
𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�  (S9) 

Then, from Eq.(S8) and (S9) we get 

 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� =  4𝑘𝑘𝑜𝑜4 � 𝑑𝑑𝑧𝑧𝑗𝑗
𝑑𝑑𝑗𝑗

� 𝑑𝑑𝑧𝑧𝑖𝑖
𝑑𝑑𝑖𝑖

𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝑧𝑧𝑗𝑗�𝜀𝜀𝑖𝑖′′(𝜔𝜔, 𝑧𝑧𝑖𝑖)𝑔𝑔𝛾𝛾𝛾𝛾𝐸𝐸 �𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥; 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗�𝑔𝑔𝛼𝛼𝛼𝛼𝐸𝐸∗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥; 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗� (S10) 

The thermal transmissivity 𝜖𝜖𝑖𝑖𝑖𝑖 is dimensionless (𝐠𝐠 has units of 𝑚𝑚) and it depends on the geometry 
and materials of the entire photonic system (via 𝐠𝐠), but not on temperatures or voltages. Furthermore, 
when the system is reciprocal, 𝐠𝐠�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗� = 𝐠𝐠𝑇𝑇�𝑧𝑧𝑗𝑗, 𝑧𝑧𝑖𝑖�, so, from Eq.(S10), 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = 𝜖𝜖𝑗𝑗𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�. 

 
Calculation of thermal transmissivity for planar systems 
To calculate 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥� via Eq.(S10) requires the evaluation of a difficult double integral. Instead, from 
PT [Eq.(S2)] and with 𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼 the Levi-Civita symbol for vector outer products, 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) in Eq.(S3) is written 

 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) = 4 ∙ � 𝑑𝑑𝐫𝐫𝑖𝑖  
1
2

Re�−〈𝐸𝐸𝑖𝑖,α𝐽𝐽𝑗𝑗,𝛼𝛼
∗ 〉�

𝑉𝑉𝑖𝑖
− 4 ∙ 𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼 � 𝑑𝑑𝐴𝐴𝑖𝑖,𝛼𝛼

1
2

Re�〈𝐸𝐸𝑖𝑖,𝛽𝛽𝐻𝐻𝑖𝑖,𝜸𝜸∗ 〉�
𝐴𝐴𝑖𝑖

 (S11) 

For thermal power transmission between different objects (𝑖𝑖 ≠ 𝑗𝑗), the first term on the right-hand side of 
Eq.(S11) is zero. Using 𝐆𝐆𝐸𝐸,𝐻𝐻 from Eq.(S4), the second term becomes 

 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) = −4𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼 � 𝑑𝑑𝐴𝐴𝑖𝑖,𝛼𝛼Re �
i𝜔𝜔𝜇𝜇𝑜𝑜

2
〈� 𝑑𝑑𝐫𝐫𝑗𝑗 𝐺𝐺𝛽𝛽𝛽𝛽𝐸𝐸 �𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗�𝐽𝐽𝑗𝑗,𝜇𝜇�𝐫𝐫𝑗𝑗�
𝑉𝑉𝑗𝑗

� 𝑑𝑑𝐫𝐫𝑗𝑗′ 𝐺𝐺𝛾𝛾𝛾𝛾𝐻𝐻∗�𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗′�𝐽𝐽𝑗𝑗,𝜈𝜈
∗ �𝐫𝐫𝑗𝑗′�

𝑉𝑉𝑗𝑗
〉�

𝐴𝐴𝑖𝑖
 (S12) 

Using the FDT from Eq.(S1), 

 𝑝𝑝𝑖𝑖𝑖𝑖(𝜔𝜔) =  
ℏ𝜔𝜔
2𝜋𝜋

Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔) ∙ 4𝑘𝑘𝑜𝑜2𝜀𝜀𝛼𝛼𝛼𝛼𝛼𝛼 � 𝑑𝑑𝐴𝐴𝑖𝑖,𝛼𝛼 � 𝑑𝑑𝐫𝐫𝑗𝑗 𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝐫𝐫𝑗𝑗� Im�𝐺𝐺𝛽𝛽𝛽𝛽𝐸𝐸 �𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗�𝐺𝐺𝛾𝛾𝛾𝛾𝐻𝐻∗�𝐫𝐫𝑖𝑖, 𝐫𝐫𝑗𝑗��
𝑉𝑉𝑗𝑗𝐴𝐴𝑖𝑖

 (S13) 

 



For a planar system, using Eq.(S7) and the definition Eq.(S9), 𝜖𝜖𝑖𝑖𝑖𝑖 can be calculated by the single integral 

 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = 4𝑘𝑘𝑜𝑜2� 𝑑𝑑𝑧𝑧𝑗𝑗𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝑧𝑧𝑗𝑗� Im �𝜀𝜀𝛽𝛽𝛽𝛽𝑔𝑔𝛽𝛽𝛽𝛽𝐸𝐸 �𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥; 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗�𝑔𝑔𝛾𝛾𝛾𝛾𝐻𝐻∗�𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥; 𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗��𝑧𝑧𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚�
𝑑𝑑𝑗𝑗

 (S14) 

where 𝛽𝛽, 𝛾𝛾 now run only through 𝑥𝑥,𝑦𝑦 in Cartesian coordinates or 𝜌𝜌,𝜃𝜃 in cylindrical coordinates. 

Eq.(S14) includes two evaluations at the boundaries of layer 𝑖𝑖. Layers 1 and 𝑁𝑁 might be semi-infinite 
(unbounded) or bounded by a Perfect Electric Conductor (PEC) or a Perfect Magnetic Conductor (PMC). 
When 𝑗𝑗 < 𝑖𝑖, the boundary term at 𝑧𝑧𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 exists, only if layer 𝑖𝑖 is finite and there is another layer > 𝑖𝑖 with 
absorption or there is radiation at 𝑧𝑧 → +∞ for mode �𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�. Similarly when 𝑗𝑗 > 𝑖𝑖, for the term at 𝑧𝑧𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚. 

To calculate 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥� via Eq.(S14), one can construct a semi-analytical expression for the Green’s 
functions 𝐠𝐠, using a scattering matrix formalism, and then perform the 𝑧𝑧𝑗𝑗-integration analytically. We use 
the procedure outlined by Ref. 4, however, with the canonical scattering-matrix formulation5: 

For a two-port with ports 𝐼𝐼 and 𝐼𝐼𝐼𝐼, waves incoming to the ports have amplitudes 𝑎𝑎𝐼𝐼 ,𝑎𝑎𝐼𝐼𝐼𝐼 – for 
example, (𝐄𝐄,𝐇𝐇)𝐼𝐼,𝑖𝑖𝑖𝑖 = 𝑎𝑎𝐼𝐼(𝛟𝛟𝐸𝐸 ,𝛟𝛟𝐻𝐻)𝐼𝐼 – and waves outgoing from the ports have amplitudes 𝑏𝑏𝐼𝐼 , 𝑏𝑏𝐼𝐼𝐼𝐼. The 

wavefunctions 𝜙𝜙𝐸𝐸 ,𝜙𝜙𝐻𝐻 are normalized for unity complex power – for example, 1
2
𝐄𝐄𝐼𝐼,𝑖𝑖𝑖𝑖 × 𝐇𝐇𝐼𝐼,𝑖𝑖𝑖𝑖 ∙ 𝐳𝐳� = 𝑎𝑎𝐼𝐼2 ↔

1
2
𝛟𝛟𝐼𝐼
𝐸𝐸 × 𝛟𝛟𝐼𝐼

𝐻𝐻 ∙ 𝐳𝐳� = 1. Then, the scattering matrix is defined by  (𝑏𝑏𝐼𝐼 𝑏𝑏𝐼𝐼𝐼𝐼)𝑇𝑇 = 𝐒𝐒� ∙ (𝑎𝑎𝐼𝐼 𝑎𝑎𝐼𝐼𝐼𝐼)𝑇𝑇  and, with this 

definition, it is symmetric (𝐒𝐒� = 𝐒𝐒�𝑇𝑇) for reciprocal systems and unitary (𝐒𝐒�†𝐒𝐒� = 𝐈̿𝐈) for lossless systems. 

At an interface of adjacent layers 𝑚𝑚, 𝑛𝑛, we use reflection and transmission coefficients for incidence 
from layer 𝑚𝑚: 𝑟𝑟𝑚𝑚𝑚𝑚 = (𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑛𝑛)/(𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑛𝑛) = −𝑟𝑟𝑛𝑛𝑛𝑛 and 𝑡𝑡𝑚𝑚𝑚𝑚 = 2�𝑋𝑋𝑚𝑚𝑋𝑋𝑛𝑛/(𝑋𝑋𝑚𝑚 + 𝑋𝑋𝑛𝑛) = 𝑡𝑡𝑛𝑛𝑛𝑛, where the 
admittance of a TE wave in layer 𝑛𝑛 is 𝑋𝑋𝑛𝑛 = 𝑘𝑘𝑧𝑧,𝑛𝑛 𝜔𝜔𝜀𝜀𝑛𝑛⁄  and the impedance of a TM wave is 𝑋𝑋𝑛𝑛 = 𝑘𝑘𝑧𝑧,𝑛𝑛 𝜔𝜔𝜇𝜇𝑜𝑜⁄ . 
Note that, with this convention, at 𝑘𝑘𝑥𝑥𝑥𝑥 = 0, although the TE and TM waves are identical, 𝑟𝑟𝑚𝑚𝑚𝑚

𝑇𝑇𝑇𝑇 = −𝑟𝑟𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇. 

For the thermal system of layers, stacked from bottom to top, we define the amplitude coefficients 
(𝐴𝐴𝑛𝑛, 𝐵𝐵𝑛𝑛, 𝐶𝐶𝑛𝑛, 𝐷𝐷𝑛𝑛) for the upward and downward propagating (or evanescent) waves in each layer4 at the 
middle of the layer, except for a semi-infinite bottom layer 1 or top layer 𝑁𝑁, defined at their only interface. 
Let 𝐒𝐒�1𝑗𝑗 be the scattering matrix between layers 1, 𝑗𝑗 [where 𝐒𝐒�1𝑗𝑗 = (0  1; 1  0), if 𝑗𝑗 = 1 and semi-infinite], 
and 𝐒𝐒�𝑗𝑗𝑗𝑗 between layers 𝑗𝑗, 𝑁𝑁. Also, let 𝑟𝑟1 = 0, if the bottom boundary of layer 1 is open, 𝑟𝑟1 = −1, if it is 
PEC for TE polarization or PMC for TM, and 𝑟𝑟1 = 1, if it is PMC for TE or PEC for TM. Similarly, 𝑟𝑟𝑁𝑁 = 0 or 
−1 or 1 for the top boundary of layer 𝑁𝑁. Then, the coefficients at the emitting layer 𝑗𝑗 are: 

 𝑆𝑆1,𝑗𝑗 =
𝐒𝐒�1𝑗𝑗(1,2)𝐒𝐒�1𝑗𝑗(2,1)𝑟𝑟1

1 − 𝐒𝐒�1𝑗𝑗(1,1)𝑟𝑟1
+ 𝐒𝐒�1𝑗𝑗(2,2)   

 𝑆𝑆𝑁𝑁,𝑗𝑗 =
𝐒𝐒�𝑗𝑗𝑗𝑗(2,1)𝐒𝐒�𝑗𝑗𝑗𝑗(1,2)𝑟𝑟𝑁𝑁

1 − 𝐒𝐒�𝑗𝑗𝑗𝑗(2,2)𝑟𝑟𝑁𝑁
+ 𝐒𝐒�𝑗𝑗𝑗𝑗(1,1) (S15) 

and 𝐴𝐴𝑗𝑗 = 𝐵𝐵𝑗𝑗𝑆𝑆1,𝑗𝑗 = 𝐶𝐶𝑗𝑗𝑆𝑆𝑁𝑁,𝑗𝑗 = 𝐷𝐷𝑗𝑗 =
𝑆𝑆1,𝑗𝑗𝑆𝑆𝑁𝑁,𝑗𝑗

1 − 𝑆𝑆1,𝑗𝑗𝑆𝑆𝑁𝑁,𝑗𝑗
 (S16) 

[Note: If layer 𝑗𝑗 = 1 and semi-infinite (𝑟𝑟1 = 0), 𝑆𝑆1,1 = 0 = 𝐴𝐴1 = 𝐶𝐶1 = 𝐷𝐷1 and 𝐵𝐵1 = 𝑆𝑆𝑁𝑁,1. 
If layer 𝑗𝑗 = 𝑁𝑁 and semi-infinite (𝑟𝑟𝑁𝑁 = 0), 𝑆𝑆𝑁𝑁,𝑁𝑁 = 0 = 𝐴𝐴𝑁𝑁 = 𝐵𝐵𝑁𝑁 = 𝐷𝐷𝑁𝑁 and 𝐶𝐶𝑁𝑁 = 𝑆𝑆1,𝑁𝑁.] 



Now, let 𝐒𝐒�𝑗𝑗𝑗𝑗 be the scattering matrix between the layers 𝑗𝑗, 𝑖𝑖, and assume that 𝑗𝑗 < 𝑖𝑖. Then, the amplitude 
coefficients at layer 𝑖𝑖 relative to those at layer 𝑗𝑗 are: 

 𝐵𝐵𝑖𝑖𝑖𝑖 =
𝐵𝐵𝑗𝑗 − �1 + 𝐴𝐴𝑗𝑗�𝐒𝐒�𝑗𝑗𝑗𝑗(1,1)

𝐒𝐒�𝑗𝑗𝑗𝑗(1,2)
   

 𝐴𝐴𝑖𝑖𝑖𝑖 = �1 + 𝐴𝐴𝑗𝑗�𝐒𝐒�𝑗𝑗𝑗𝑗(2,1) + 𝐵𝐵𝑖𝑖𝑖𝑖𝐒𝐒�𝑗𝑗𝑗𝑗(2,2) (S17) 

 𝐷𝐷𝑖𝑖𝑖𝑖 =
𝐷𝐷𝑗𝑗 − 𝐶𝐶𝑗𝑗𝐒𝐒�𝑗𝑗𝑗𝑗(1,1)

𝐒𝐒�𝑗𝑗𝑗𝑗(1,2)
  

 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑗𝑗𝐒𝐒�𝑗𝑗𝑗𝑗(2,1) + 𝐷𝐷𝑖𝑖𝑖𝑖𝐒𝐒�𝑗𝑗𝑗𝑗(2,2)  

Let 𝑥𝑥𝑛𝑛 = 𝑋𝑋𝑛𝑛 |𝑋𝑋𝑛𝑛|⁄ = 𝑥𝑥𝑛𝑛′ + i𝑥𝑥𝑛𝑛′′, the complex 𝑧𝑧-wavevector 𝑘𝑘𝑧𝑧,𝑛𝑛 = �𝑘𝑘𝑜𝑜2𝜀𝜀𝑛𝑛 − 𝑘𝑘𝑥𝑥𝑥𝑥2 = 𝑘𝑘𝑧𝑧,𝑛𝑛
′ + i𝑘𝑘𝑧𝑧,𝑛𝑛

′′ , the complex 
𝑧𝑧-propagation phase 𝑢𝑢𝑛𝑛 = 𝑘𝑘𝑧𝑧,𝑛𝑛𝑑𝑑𝑛𝑛 = 𝑢𝑢𝑧𝑧,𝑛𝑛

′ + i𝑢𝑢𝑧𝑧,𝑛𝑛
′′ , and 𝑅𝑅𝑛𝑛 = 2𝑥𝑥𝑛𝑛′ sinh�𝑢𝑢𝑧𝑧,𝑛𝑛

′′ �, 𝐼𝐼𝑛𝑛 = 2𝑥𝑥𝑛𝑛′′sin�𝑢𝑢𝑧𝑧,𝑛𝑛
′ �, if layer 𝑛𝑛 

is finite, or 𝑅𝑅𝑛𝑛 = 𝑥𝑥𝑛𝑛′ , 𝐼𝐼𝑛𝑛 = 𝑥𝑥𝑛𝑛′′, if it is semi-infinite. Then we finally calculate: 

 

𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = 𝑅𝑅𝑗𝑗𝑅𝑅𝑖𝑖�𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖∗ + 𝐵𝐵𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖∗ + 𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖∗ + 𝐷𝐷𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑗𝑗∗ �
+ 𝑅𝑅𝑗𝑗𝐼𝐼𝑖𝑖 �𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖∗ + 𝐵𝐵𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖∗ + 𝐶𝐶𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖∗ + 𝐷𝐷𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖∗ �
+ 𝐼𝐼𝑗𝑗𝑅𝑅𝑖𝑖 �𝐴𝐴𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖∗ + 𝐵𝐵𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖∗ + 𝐶𝐶𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖∗ + 𝐷𝐷𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖∗ �
+ 𝐼𝐼𝑗𝑗𝐼𝐼𝑖𝑖 �𝐴𝐴𝑖𝑖𝑖𝑖𝐷𝐷𝑖𝑖𝑖𝑖∗ + 𝐵𝐵𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖∗ + 𝐶𝐶𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖∗ + 𝐷𝐷𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖∗ � 

(S18) 

[Note: If layer 𝑗𝑗 = 1 and semi-infinite, then 𝐶𝐶𝑖𝑖1 = 𝐷𝐷𝑖𝑖1 = 0. 

 If layer 𝑖𝑖 = 𝑁𝑁 and semi-infinite too, then 𝐴𝐴𝑁𝑁1 = 𝐒𝐒�1𝑁𝑁(2,1), 𝐵𝐵𝑁𝑁1 = 0, and 𝜖𝜖𝑁𝑁1 = 𝑥𝑥1′𝑥𝑥𝑁𝑁′ �𝐒𝐒�1𝑁𝑁(2,1)�
𝟐𝟐

.] 

Similar procedure can be followed, if 𝑗𝑗 > 𝑖𝑖. Therefore, using Eq.(S15)-(S18), the thermal transmissivity 
𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�, as defined in Eq.(S9), can be fully calculated for planar systems in a semi-analytical way. 

 
Definition and Calculation of thermal emissivity for planar systems 
We also define the thermal emissivity of photons from layer 𝑗𝑗, 𝜖𝜖𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�, via the net power per unit area 
emitted outwards by 𝑗𝑗 due to its thermal sources, when all other 𝑇𝑇𝑖𝑖≠𝑗𝑗 = 0. Clearly, this power must be 
the sum of the powers transmitted to all other absorbing layers and the power potentially radiated into 
infinity, namely transmitted to the two semi-infinite boundary layers, so 𝜖𝜖𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = ∑ 𝜖𝜖𝑖𝑖𝑖𝑖�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�𝑖𝑖≠𝑗𝑗 . 
This thermal emissivity is a generalization of the regular (𝑘𝑘𝑥𝑥𝑥𝑥-independent) emissivity6. Using Eq.(S14): 

 𝜖𝜖𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = −4𝑘𝑘𝑜𝑜2 � 𝑑𝑑𝑧𝑧𝑗𝑗𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝑧𝑧𝑗𝑗� Im �𝜀𝜀𝛽𝛽𝛽𝛽𝑔𝑔𝛽𝛽𝛽𝛽𝐸𝐸 �𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥; z𝑗𝑗′, 𝑧𝑧𝑗𝑗�𝑔𝑔𝛾𝛾𝛾𝛾𝐻𝐻∗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥; z𝑗𝑗′, 𝑧𝑧𝑗𝑗��𝑧𝑧𝑗𝑗,𝑚𝑚𝑖𝑖𝑖𝑖

𝑧𝑧𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚�
𝑑𝑑𝑗𝑗

 (S19) 

With the same procedure, and 𝑅𝑅�𝑛𝑛 = 2𝑥𝑥𝑛𝑛′ exp�−𝑢𝑢𝑧𝑧,𝑛𝑛
′′ �, 𝐼𝐼𝑛𝑛 = 2𝑥𝑥𝑛𝑛′′exp�−i𝑢𝑢𝑧𝑧,𝑛𝑛

′ �, 𝑈𝑈�𝑛𝑛 = 2�1 − exp�−2𝑢𝑢𝑧𝑧,𝑛𝑛
′′ ��, 

if layer 𝑛𝑛 is finite, or 𝑅𝑅�𝑛𝑛 = 0, 𝐼𝐼𝑛𝑛 = 2𝑥𝑥𝑛𝑛′′, 𝑈𝑈�𝑛𝑛 = 1, if it is semi-infinite, we can also calculate: 

 
𝜖𝜖𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = 𝑥𝑥𝑗𝑗′

2𝑈𝑈�𝑗𝑗 + 𝑅𝑅𝑗𝑗�𝑅𝑅�𝑗𝑗Re�𝐴𝐴𝑗𝑗 + 𝐷𝐷𝑗𝑗� + Im�𝐼𝐼𝑗𝑗�𝐵𝐵𝑗𝑗 + 𝐶𝐶𝑗𝑗���  
+ 𝐼𝐼𝑗𝑗�𝑅𝑅�𝑗𝑗Re�𝐵𝐵𝑗𝑗 + 𝐶𝐶𝑗𝑗�  + Im�𝐼𝐼𝑗𝑗�𝐴𝐴𝑗𝑗 + 𝐷𝐷𝑗𝑗��� − Eq. (S18)|𝑖𝑖𝑖𝑖→𝑗𝑗  

(S20) 



As explained in the main text, the transmissivity 𝜖𝜖𝑖𝑖𝑖𝑖 and emissivity 𝜖𝜖𝑗𝑗 both have maximum value 1 
for each of the two decoupled (for isotropic media TE/TM) polarizations. 

 
Calculation of thermal self-transmissivity for planar systems 
In some cases, we may want to calculate the power absorbed inside an object due to the thermal sources 
inside the same object, namely 𝑖𝑖 = 𝑗𝑗. This may be useful to model thermal energy exchange between two 
different absorption mechanisms inside the same object, such as inter-band and free-carrier absorption 
in a semiconductor and the radiative recombination process, wherein photons absorbed by the former 
are re-emitted and then absorbed by the latter, e.g. increasing the saturation current of a pn-photodiode. 
For these cases, the first term 𝐹𝐹 on the right-hand side of Eq.(S11) is non-zero. Using 𝐆𝐆𝐸𝐸 from Eq.(S4) and 
using the FDT [Eq.(S1)] for the expectation value, we get 

 𝐹𝐹 =
ℏ𝜔𝜔
2𝜋𝜋

Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔) ∙ 4𝑘𝑘𝑜𝑜2 � 𝑑𝑑𝐫𝐫𝑗𝑗𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝐫𝐫𝑗𝑗� Im �𝐺𝐺𝛼𝛼𝛼𝛼𝐸𝐸 �𝐫𝐫𝑗𝑗, 𝐫𝐫𝑗𝑗��
𝑉𝑉𝑗𝑗

 (S21) 

Then, with a similar definition to Eq.(S9) for 𝑖𝑖 = 𝑗𝑗, we arrive at the ‘thermal form’ of Poynting’s Theorem 
[Eq.(S2)], for a layer 𝑗𝑗 in a planar system: 

 𝜖𝜖𝑗𝑗𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = 4𝑘𝑘𝑜𝑜2 � 𝑑𝑑𝑧𝑧𝑗𝑗𝜀𝜀𝑗𝑗′′�𝜔𝜔, 𝑧𝑧𝑗𝑗� Im�𝑔𝑔𝛼𝛼𝛼𝛼𝐸𝐸 �𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥; 𝑧𝑧𝑗𝑗, 𝑧𝑧𝑗𝑗��
𝑑𝑑𝑗𝑗

− 𝜖𝜖𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� (S22) 

With 𝑝𝑝 = 1 for TE waves or 𝑝𝑝 = �𝑘𝑘𝑜𝑜2 − 𝑘𝑘𝑧𝑧,𝑗𝑗
2 � �𝑘𝑘𝑜𝑜2 + 𝑘𝑘𝑧𝑧,𝑗𝑗

2 ��  for TM waves, the integral term in Eq.(S22), 
denoted by 𝜖𝜖𝐉𝐉,𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥�, is calculated 

 𝜖𝜖𝐉𝐉,𝑗𝑗�𝜔𝜔,𝑘𝑘𝑥𝑥𝑥𝑥� = 4Re �
𝑘𝑘𝑧𝑧,𝑗𝑗
′ 𝑘𝑘𝑧𝑧,𝑗𝑗

′′

𝑘𝑘𝑧𝑧,𝑗𝑗
2 ��1 + 𝐴𝐴𝑗𝑗 + 𝐷𝐷𝑗𝑗�𝑢𝑢𝑗𝑗 + 𝑝𝑝�𝐵𝐵𝑗𝑗 + 𝐶𝐶𝑗𝑗�sin�𝑢𝑢𝑗𝑗��� (S23) 

Note that, for the term 𝜖𝜖𝑗𝑗𝑗𝑗, we are only interested in the (practical) case where layer 𝑗𝑗 is finite (𝑑𝑑𝑗𝑗 < ∞), 
otherwise 𝜖𝜖𝐉𝐉,𝑗𝑗 diverges. If a value is needed for a semi-infinite layer (for example, in Ref. 6), one can be 
provided by removing the divergent parts in Eq.(S23) and keeping only the structure-related terms:  

If layer 𝑗𝑗 = 1 and semi-infinite, 𝜖𝜖𝐉𝐉,1 = 4Re �𝑘𝑘𝑧𝑧,1
′ 𝑘𝑘𝑧𝑧,1

′′ 𝑘𝑘𝑧𝑧,1
2⁄ �𝑝𝑝�𝐒𝐒�12(1,1)− 𝑆𝑆𝑁𝑁,1� 2i⁄ ��. 

If layer 𝑗𝑗 = 𝑁𝑁 and semi-infinite, 𝜖𝜖𝐉𝐉,𝑁𝑁 = 4Re �𝑘𝑘𝑧𝑧,𝑁𝑁
′ 𝑘𝑘𝑧𝑧,𝑁𝑁

′′ 𝑘𝑘𝑧𝑧,𝑁𝑁
2⁄ �𝑝𝑝�𝐒𝐒�𝑁𝑁−1,𝑁𝑁(2,2) − 𝑆𝑆1,𝑁𝑁� 2i⁄ ��. 

 
Superposition principle 
In a system of multiple objects, each one at temperature 𝑇𝑇𝑗𝑗 and with voltage 𝑉𝑉𝑗𝑗 across it, the thermally-
excited sources inside each object 𝑗𝑗 generate photons with mean number Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔). To find the net rate 
of photons 𝑅𝑅𝑖𝑖 (or power 𝑃𝑃𝑖𝑖 equivalently) emitted by object 𝑖𝑖, one must successively set to zero the 
temperatures of all objects but one each time, and then apply superposition. Using 𝜖𝜖𝑖𝑖(𝜔𝜔) = ∑ 𝜖𝜖𝑗𝑗𝑗𝑗(𝜔𝜔)𝑗𝑗≠𝑖𝑖 , 

 𝑅𝑅𝑖𝑖 = � 𝑅𝑅𝑗𝑗𝑗𝑗 − 𝑅𝑅𝑖𝑖𝑖𝑖
𝑗𝑗

= �
𝑑𝑑𝑑𝑑
2𝜋𝜋 �

Θ𝑉𝑉𝑖𝑖𝑇𝑇𝑖𝑖(𝜔𝜔)𝜖𝜖𝑖𝑖(𝜔𝜔) −� Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔)𝜖𝜖𝑖𝑖𝑖𝑖(𝜔𝜔)
𝑗𝑗≠𝑖𝑖

� (S24) 

If the system is reciprocal, then 𝜖𝜖𝑖𝑖𝑖𝑖(𝜔𝜔) = 𝜖𝜖𝑗𝑗𝑗𝑗(𝜔𝜔), so Eq.(S24) can also be written as 

 𝑅𝑅𝑖𝑖 = �
𝑑𝑑𝑑𝑑
2𝜋𝜋

� �Θ𝑉𝑉𝑖𝑖𝑇𝑇𝑖𝑖(𝜔𝜔)− Θ𝑉𝑉𝑗𝑗𝑇𝑇𝑗𝑗(𝜔𝜔)� 𝜖𝜖𝑗𝑗𝑗𝑗(𝜔𝜔)
𝑗𝑗

 (S25) 



RESULTS 

Surface-Plasmon-Polariton emitter and bulk semiconductor absorber7,8 
Consider the structure in Figure S1a, which is the same as in Figure 1e, but with an additional ‘base’ region 
in the semiconductor, which has a very large (bulk) width and is more lightly doped than the thin front 
(pn-junction ‘emitter’) region of permittivity 𝜀𝜀𝑎𝑎 from Eq.(7). We use 𝑑𝑑𝑎𝑎,base = 5𝜆𝜆𝑔𝑔 and doping level 
𝜔𝜔𝑝𝑝,𝑎𝑎,base = 𝜔𝜔𝑝𝑝,𝑎𝑎/2 =  0.2𝜔𝜔𝑔𝑔/�𝜀𝜀∞,𝑎𝑎, which would correspond, for example, to 𝑁𝑁𝑒𝑒 ≈ 2 × 1017𝑐𝑐𝑐𝑐−3 
electrons at 𝐸𝐸𝑔𝑔 = 0.4𝑒𝑒𝑒𝑒 (𝑇𝑇𝑒𝑒 = 1200°𝐾𝐾). Therefore, the permittivity in the ‘base’ region is taken as 

 𝜀𝜀𝑎𝑎,base(𝜔𝜔) = 14 −
0.04

(𝜔𝜔/𝜔𝜔𝑔𝑔)2 + i0.01𝜔𝜔/𝜔𝜔𝑔𝑔
+ i0.7(𝜔𝜔𝑔𝑔/𝜔𝜔)�14(𝜔𝜔/𝜔𝜔𝑔𝑔 − 1) (S26) 

We keep the silver back electrode, as it helps prevent radiation of photons within the semiconductor light-
line7. We optimize again the efficiency vs load power, at 𝑇𝑇𝑒𝑒 = 1200°𝐾𝐾 with fixed 𝑑𝑑𝑎𝑎 = 0.07𝜆𝜆𝑔𝑔 and at 𝑇𝑇𝑒𝑒 =
3000°𝐾𝐾 with fixed 𝑑𝑑𝑎𝑎 = 0.061𝜆𝜆𝑔𝑔, to compare with the thin-film optimized structures at high power. The 
optimization parameters are 𝜔𝜔𝑝𝑝,𝑒𝑒/𝜔𝜔𝑔𝑔, 𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣/𝜆𝜆𝑔𝑔, 𝑞𝑞𝑞𝑞/𝐸𝐸𝑔𝑔. 

The results are shown in Figure 3 with thin solid lines, cyan and orange for 𝑇𝑇𝑒𝑒 = 1200°𝐾𝐾 and 
3000°𝐾𝐾 respectively. In Figure S1b-e are the TM emitter emissivities and emitter/load power densities 
for the two power levels 𝑃𝑃1 and 𝑃𝑃3 (shown with dots in Figure 3a) at 1200°𝐾𝐾.  

At low power, clearly, the efficiency is significantly lower than in the thin-film absorber case (Figure 
3a). Most of the losses come from free-carrier absorption within the semiconductor bulk (Figure 3b). This 
is because this single-mode impedance matching requires a much smaller vacuum gap at the same power 
level (Figure 3d) and thus the emitter SPP couples strongly with the absorber free carriers. At the same 
time, the bulk absorber geometry means that the semiconductor light-cone is filled with modes, also 
below bandgap, which also attribute to loss by free-carrier absorption (Figures S1b, S1d). This is more 
pronounced for smaller load power, where low-𝑘𝑘𝑥𝑥𝑥𝑥 modes play a greater role. At the same power level 
𝑃𝑃1, the coupled-resonances structure has a much sharper power-density spectrum in Figure 1d than that 
of the single-resonance structure in Figure S1c, which also exhibits significant non-zero emission for all 
below-bandgap frequencies.  

At higher power, the two structures behave similarly, as the thin-film is also non-resonant, so their 
power spectra at 𝑃𝑃3 (Figures 4d, S1e) exhibit a strong emissivity peak, associated with the SPP mode at 
the interface of the doped semiconductor with the vacuum gap. 

The distant silver back electrode does not impact efficiency greatly (Figure 3b). In previous studies 
with thick absorbers in both far-field9 and near-field7 TPV systems, a metallic back reflector has been 
shown to slightly improve efficiency by reflecting back into the emitter and recycling the undesired below-
bandgap photons. However, this improvement was not significant and we see here that true removal of 
the radiation modes can only happen with a thin-film PV cell. Note that, for both the currently-proposed 
thin-film-absorber and also the bulk-absorber TPV systems, the thermalization losses (Figure 3b) stay 
relatively close to the 𝑇𝑇𝑎𝑎/𝑇𝑇𝑒𝑒 value dictated by the Carnot limit. 

 

 



 
Supplementary Figure S1. (a) TPV structure of a plasmonic emitter and a silver-backed semiconductor bulk absorber. The 
semiconductor 𝜀𝜀𝑎𝑎 and 𝜀𝜀𝑎𝑎,base include free carriers to model the diffused-’emitter’ front electrode and the doped ‘base’ 
respectively. The emitter-SPP modal energy profile is shown qualitatively. (b,c,d,e) Spectra for optimized results of Fig.3 cyan 
lines (at 𝑇𝑇𝑒𝑒 = 1200°𝐾𝐾, 𝑇𝑇𝑎𝑎 = 300°𝐾𝐾 and with 𝐸𝐸𝑔𝑔 = 4𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒 = 0.414𝑒𝑒𝑒𝑒) at: (b,c) 𝑃𝑃1, (d,e) 𝑃𝑃3. (b,d) TM emitter emissivity 
𝜖𝜖𝑒𝑒�𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥� (color plot); green line is the semiconductor-material radiation cone. (c,e) TM emitter power 𝑃𝑃𝑒𝑒(𝜔𝜔) (red line) and load 
power 𝑃𝑃𝑙𝑙(𝜔𝜔) (green line) densities at the optimal-efficiency load voltage. 
 

 
Supplementary Figure S2. (a) TPV structure of a tungsten-backed semiconductor thin-film emitter and a silver-backed 
semiconductor thin-film absorber. The semiconductor 𝜀𝜀e and 𝜀𝜀𝑎𝑎 include free carriers to model the elevated intrinsic carriers and 
the front electrode respectively. The coupled emitter- and absorber-waveguide modal energy profiles are shown qualitatively. 
(b,c,d,e) Spectra for optimized results of Fig.3 green lines (at 𝑇𝑇𝑒𝑒 = 1200°𝐾𝐾, 𝑇𝑇𝑎𝑎 = 300°𝐾𝐾 and with 𝐸𝐸𝑔𝑔 = 4𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒 = 0.414𝑒𝑒𝑒𝑒) at: 
(b,c) 𝑃𝑃1, (d,e) 𝑃𝑃3. (b,d) Total (TM+TE) emitter emissivity 𝜖𝜖𝑒𝑒�𝜔𝜔, 𝑘𝑘𝑥𝑥𝑥𝑥� (color plot); green line is the semiconductor-material radiation 
cone. (c,e) Total emitter power 𝑃𝑃𝑒𝑒(𝜔𝜔) (red line) and load power 𝑃𝑃𝑙𝑙(𝜔𝜔) (green line) densities at the optimal-efficiency load voltage.  



Thin-film semiconductor emitter and absorber10 
Consider two coupled metal-backed semiconductor thin-films, shown in Figure S2a, where the 

bandgaps of the emitter and absorber semiconductors are matched. We perform the optimization at 𝑇𝑇𝑒𝑒 =
1200°𝐾𝐾, for comparison to the SPP-emitter results, although it is higher than most semiconductor melting 
temperatures (exceptions Ge: ~1211°𝐾𝐾 and Si: ~1638°𝐾𝐾). For the PV cell, we use the same 
semiconductor permittivity 𝜀𝜀𝑎𝑎 from Eq.(7) and a silver back electrode. For the emitter, we assume an 
undoped semiconductor with matched bandgap ℏ𝜔𝜔𝑔𝑔 = 4𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒 = 0.414𝑒𝑒𝑒𝑒 and permittivity 𝜀𝜀𝑒𝑒 of the 
same form of Eq.(7). However, at that close-to-melting temperature the thermally-excited intrinsic 
carriers will be extremely high and the mobility of those carriers greatly reduced. It is not easy to exactly 
predict those quantities, but based on estimations (using 𝑛𝑛𝑖𝑖~𝑇𝑇3/2𝑒𝑒−𝐸𝐸𝑔𝑔/2𝑘𝑘𝐵𝐵𝑇𝑇 and 𝜇𝜇~1/𝑇𝑇 for n-GaAs11), 
we make the simple assumptions that carriers are 4 times higher than in the absorber, so �𝜀𝜀∞,𝑒𝑒𝜔𝜔𝑝𝑝,𝑒𝑒 =
 0.8𝜔𝜔𝑔𝑔, and that carrier mobility is 4 times lower, so 𝛾𝛾𝑒𝑒 = 0.08𝜔𝜔𝑔𝑔. We also ignore the effect that the 
bandgap shifts to lower frequencies and gets smeared at high temperature (one could claim that an 
emitter semiconductor can be chosen, such that it has a high-energy bandgap at room temperature, which 
shifts down to meet the absorber at high temperature, although, in reality, this is likely possible only for 
few sets of semiconductor pairs). Finally, the emitter thin film is backed by tungsten W. By fitting the 
Drude model to room-temperature experimental data for tungsten in the range (0.1 − 1)𝑒𝑒𝑒𝑒, we get 
𝜀𝜀∞,𝑊𝑊 = 36, �𝜀𝜀∞,𝑊𝑊ℏ𝜔𝜔𝑝𝑝,𝑊𝑊 =  5.88𝑒𝑒𝑒𝑒 and ℏ𝛾𝛾𝑊𝑊(300°𝐾𝐾) = 0.058𝑒𝑒𝑒𝑒; at 1200°𝐾𝐾, we increase the loss rate 
in proportion to the increase of the dc resistivity12, so ℏ𝛾𝛾𝑊𝑊(1200°𝐾𝐾) = 0.33𝑒𝑒𝑒𝑒. Since the real parts of 𝜀𝜀𝑎𝑎, 
𝜀𝜀𝑒𝑒 are quite similar and Ag, W will perform similarly for modal confinement, we take, for simplicity, equal 
thickness 𝑑𝑑𝑎𝑎 of the two thin films, which is such that the first waveguide modes of the emitter and 
absorber couple just above bandgap. Our optimization parameters are thus 𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣/𝜆𝜆𝑔𝑔, 𝑑𝑑𝑎𝑎/𝜆𝜆𝑔𝑔 and 𝑞𝑞𝑞𝑞/𝐸𝐸𝑔𝑔. 

The results are shown again in Figure 3, with thin green lines, and in Figure S2b-e are the emitter 
emissivities (for both polarizations, so max value is 2) and emitter/load power densities for 𝑃𝑃1 and 𝑃𝑃3. 

At lower power, efficiency is similarly high as the currently proposed (SPP-emitter) systems, as the 
benefits of the resonance with the thin-film absorber are present in this system too: high above-bandgap 
emissivity due to impedance-matched coupled resonances, removal of below-bandgap modes due to the 
metallic (Ag, W) reflectors (Figures S2b, S2c), and suppressed free-carrier absorption (Figure 3b) due to 
large vacuum gap (Figure 3d). Still, the SPP-emitter system exhibits a much narrower emissivity profile 
above the bandgap in comparison (Figures 1d vs. S2c). 

As the desired load power increases, the necessary vacuum gap decreases (Figure 3d) and the ‘good’ 
waveguide modes meet their 𝑘𝑘𝑥𝑥𝑥𝑥-limit, while emissivity related to the two (emitter and absorber) ‘bad’ 
free-carrier SPP (𝑘𝑘𝑥𝑥𝑥𝑥-unbounded) modes increases strongly (Figures S2d, S2e), thus free-carrier 
absorption dominates (Figure 3b) and efficiency drops very fast (Figure 3a). Note that, if these two SPP 
modes were at the same frequency (a resonance, which we intentionally avoided in these simulations), 
there would be strong coupling between them as well and the losses would be even greater. 

It is certainly difficult to predict accurately the performance of this system, as accurate modeling of 
the semiconductors (especially at very high temperature) is non-trivial, but qualitatively one can always 
expect that there is a lower load-power limit for these systems. 
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