Synergistic Effect of H₂O₂ and NO₂ in Cell Death Induced by Cold Atmospheric He Plasma

Pierre-Marie Girard^{1,2,§}, Atousa Arbabian³, Michel Fleury³, Gérard Bauville³, Vincent Puech³, Marie Dutreix^{1,2}, and Joao Santos Sousa^{3,§}

¹ Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405, Orsay, France.

² Université Paris-Sud, Université Paris-Saclay, rue Georges Clémenceau, 91405 Orsay, France

³ LPGP, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

[§] Corresponding authors: Pierre-Marie Girard, Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France, pierre-marie.girard@curie.fr. Joao Santos Sousa, LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, joao.santos-sousa@u-psud.fr

Α

Figure S3

Figure S4

Figure S5

Α

Figure S6

Supplementary Figure Legend

Figure S1. (**A**) Photograph of the home-made system used to shield the He flow from ambient air. (**B**) Schematic representation of the system. The external diameter of the needle is 1.6mm; the internal diameter of the needle is 1.10mm; the external diameter of the quartz tube is 4.30mm; the internal diameter of the quartz tube is 1.60mm; and the external diameter of the shielding tube is 32mm. The distance between the grounded electrode and the ending of the quartz tube is 5 mm.

Figure S2. Optical densities in the UV range (from 200 nm to 400 nm) of increasing concentrations of Na_3VO_4 diluted in PBS(Ca^{2+}/Mg^{2+}). The spectra were recorded on a double beam spectrophotometer (UVIKON XS, SECOMAM®, Servilab, France).

Figure S3. (**A**) Increasing concentrations of H_2O_2 were added to solutions of 2% TiOSO₄ diluted in 3 M H₂SO₄. The absorbance of the solutions at 407 nm was recorded and plotted as a function of the concentration of H_2O_2 . The data are the mean \pm SD of 5 independent experiments. (**B**) Five hundred microliters of PBS(Ca²⁺/Mg²⁺) were exposed for the indicated periods of time to He plasma at a gas flow of 50 sccm. The treated PBS(Ca²⁺/Mg²⁺) solutions were mixed to TiOSO₄ solutions and the absorbances recorded at 407 nm. The concentration of H₂O₂ in each condition was then determined using the equation shown in Figure S3A and plotted as a function of treatment time. The data are the mean \pm SD of 6 independent experiments.

Figure S4. (A) MRC5Vi cells were seeded in 12 well plates and exposed for 1 h to increasing concentration of NO₂⁻ or NO₃⁻ diluted in 500 μ l of PBS(Ca²⁺/Mg²⁺). Thereafter, 2.5 ml of

complete medium containing serum were added and the cells incubated in a humidified atmosphere at 37°C / 5% CO₂. Twenty-four hours later, the cell viability was assessed by a MTT assay. The data are the mean \pm SD of 6 and 5 independent experiments for NO₂⁻ and NO₃⁻, respectively. (**B**) Five-hundred microliters of PBS(Ca²⁺/Mg²⁺) were set per well in a 12 well plate and exposed to He plasma at a gas flow of 50 sccm for the indicated periods of time. In parallel, 500 µl of PBS(Ca²⁺/Mg²⁺) containing the equivalent expected concentrations of H₂O₂/NO₂⁻/NO₃⁻ (for each time point) were also set per well. Thereafter, the pH of each solution was taken. The data are the mean \pm SD of 3 to 4 independent experiments. For the reconstituted media (labelled "H₂O₂/NO₂⁻/NO₃⁻ eq 50 sccm"), the error bars lie within the size of the symbols.

Figure S5. (**A**) The concentration of H_2O_2 produced per minute in 3 ml of PBS(Ca²⁺/Mg²⁺) by a He plasma jet at 100 and 400 sccm (conditions without a shielding gas of oxygen) and at an output voltage of 5.5 kV was determined by the Na₃VO₄ and TiOSO₄ assays. The data are the mean ± SD of 5 independent experiments for all the assays. Student t-test was used to check the statistical significance (*p<0.05, **p<0.01, ***p<0.001). (**B**) In parallel, the concentrations of NOx (NO₂⁻ + NO₃⁻) were determined using the Griess assay. The data are the mean ± SD of 2 independent experiments.

Figure S6. Three milliliters of PBS(Ca^{2+}/Mg^{2+}) were set per well in a 12 well plate and exposed to He plasma at a gas flow of 100 sccm in the presence (with O₂) or absence (no O₂) of a shielding gas of oxygen for the indicated period of times, and at a output voltage of 5.5 kV. The pH of plasma-treated solutions was measured immediately after the treatment. The data are the mean ± SD of 3 independent experiments.