Chemoselective Synthesis of Polysubstituted Pyridines via sequential Suzuki Cross Couplings: A SuFEx Approach

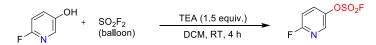
Enxuan Zhang,* Jiaze Tang, Suhua Li, Peng Wu, John E. Moses and K. Barry Sharpless*

Table of Contents

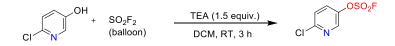
1.	General information	S2
2.	Preparation of heteroaryl fluorosulfates in 1-1 ~ 1-21 in Table 1	S2
3.	Preparation of pyridinyl triflates 8 in Figure 3.	S8
4.	General procedures for Pd-catalyzed Suzuki reaction	S8
5.	Table 1S Optimization of the Suzuki reaction of pyridin-2-yl fluorosulfate 1-8 with phenylboronic acid 2-1 ^a	S10
6.	Suzuki coupling product 3-1 ~ 3-18 in Table 2	S10
7.	Suzuki coupling product 4-1 ~ 4-11 in Table 3	S14
8.	Selective Suzuki coupled product $6-1 \sim 6-3$ in Figure 3A.	S17
9.	Selective Suzuki coupled product 7-1 ~ 7-5 in Figure 3B	S18
10.	Suzuki coupled product 9 and 10 in Figure 3C.	S19
11.	Preparation of tri-substituted pyridine 13 in Figure 4A.	S20
12.	Preparation of tri-substituted pyridine 16 in Figure 4B	S21
13.	Preparation of Etoricoxib in Scheme 2B.	S22
13.	References	S23
14.	Copies of ¹ H, ¹³ C NMR and ¹⁹ F NMR Spectra for the compounds $1 \sim 19$ and Etoricoxib.	S25

1. General information

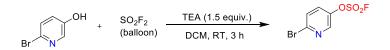
¹H and ¹³C NMR spectra were recorded on Varian Inova 500, Varian Mercury Plus 400, Varian Mercury Plus 300 instruments and the chemical shifts (δ) are expressed in parts per million relative to tetramethylsilane or residual solvent as internal standards. Proton magnetic resonance (¹H NMR) spectra were recorded at 500 or 400 MHz. Carbon magnetic resonance (¹³C NMR) spectra were recorded at 126 or 101 MHz. Fluorine magnetic resonance (¹⁹F NMR) spectra were recorded at 376 or 282 MHz and the chemical shifts (δ) are expressed in parts per million relative to FCCl₃ as internal standards. NMR acquisitions were performed at 295 K unless otherwise noted. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; br s, broad singlet. Melting points (mp) were determined using a melting point apparatus with capillary method and are uncorrected. GC-MS data were recorded on an Shimadzu GCMS-QP2010 system operating in the electron impact (EI+) mode [Method: T0 = 50 °C, t = 2 min; T1 = 260 °C, ramp = 20 °C/min, then T1 = 260 °C, t = 5.5 min]. LC-MS was performed on an Agilent 1260 LC with an Agilent 6230 mass spectrometer (electrospray ionization, ESI) eluting with 0.05% trifluoroacetic acid in CH₃CN. All starting materials and solvent were purchased from Alfa Aesar, Aldrich, Acros, TCI chemical companies or from the storehouse of Asychem Laboratories Inc. and used as received.


2. Preparation of heteroaryl fluorosulfates in $1-1 \sim 1-21$ in Table 1.

General procedure for Preparation of heteroaryl fluorosulfates 1 with TEA in DCM.

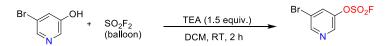

A three-neck round-bottom flask equipped with a thermometer was charged with the corresponding hydroxyheterocycles, DCM (10 mL/g) and TEA (1.5 equiv.). The mixture was stirred at room temperature for 10 min. The reaction flask was then sealed with a septum. The atmosphere above the solution was removed with gentle vacuum, and SO_2F_2 gas (sulfuryl fluoride, Vikane) from a balloon was introduced through a three-way valve joint. For large scale reactions, depletion of the sulfuryl fluoride from the balloon was easily observed, and more SO_2F_2 gas was introduced with a fresh balloon when required. The reaction mixture was vigorously stirred at room temperature for 2-24 hours, monitoring by TLC. After completion, the reaction mixture washed with saturated sodium bicarbonate and brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give heteroaryl fluorosulfates **1**.

$$(h) = \begin{array}{c} OH \\ + \\ (balloon) \end{array} + \begin{array}{c} SO_2F_2 \\ DCM, RT, 2 h \end{array} + \begin{array}{c} OSO_2F \\ N \end{array}$$

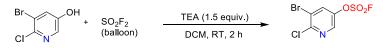

Pyridin-3-yl fluorosulfate (1-1) was prepared from 1.9 g of pyridine-3-ol and isolated as a yellow oil (3.46 g, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.79 – 8.62 (m, 2H), 7.89 – 7.63 (m, 1H), 7.60 – 7.40 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 149.86, 147.06, 142.62 (d, *J* = 0.7 Hz), 128.61, 124.81; ¹⁹F NMR (376 MHz, CDCl₃) δ = 37.99; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₅FNO₃S, 177.9974; found 177.9969.

6-*Fluoropyridin-3-yl fluorosulfate* (1-2) was prepared from 1.13 g of 6-fluoropyridin-3-ol and isolated as a yellow oil (1.76 g, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.31 (d, *J* = 0.6 Hz, 1H), 7.85 (ddd, *J* = 9.0, 6.0, 3.0 Hz, 1H), 7.11 (dd, *J* = 8.9, 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 163.15 (d, *J* = 243.2 Hz), 144.69 (d, *J* = 5.2 Hz), 140.71, 134.30 (d, *J* = 9.3 Hz), 111.52 (d, *J* = 40.32 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = 66.23, -179.71; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for 195.9880, 177.9974; found 195.9878.

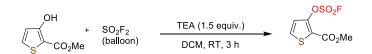
6-*Chloropyridin-3-yl fluorosulfate* (**1-3**) was prepared from 1.29 g of 6-chloropyridin-3-ol and isolated as a white solid (1.66 g, 78% yield). mp 38-40 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.48 (d, *J* = 2.8 Hz, 1H), 7.79 – 7.64 (m, 1H), 7.50 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 151.31, 146.06, 142.58, 131.63, 125.96; ¹⁹F NMR (376 MHz, CDCl₃) δ = 38.15; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄ClFNO₃S, 211.9584; found 211.9582.

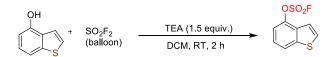


6-Bromopyridin-3-yl fluorosulfate (1-4) was prepared from 1.74 g of 6-bromopyridin-3-ol and isolated as a white solid (2.32 g, 91% yield). mp 51-53 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.46 (d, J = 2.6 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.59 (dd, J = 8.7, 2.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 159.86, 157.75, 146.37 (d, J = 4.5 Hz), 138.92 - 138.48 (m), 116.92 (d, J = 21.42 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = 38.23; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄BrFNO₃S, 255.9079; found 255.9076.



2-Bromopyridin-3-yl fluorosulfate (1-5) was prepared from 1.74 g of 2-bromopyridin-3-ol and isolated as a


light yellow oil (1.76 g, 68% yield). ¹H NMR (300 MHz, CDCl₃) δ = 8.48 (d, *J* = 4.5 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.47 (dd, *J* = 8.1, 4.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 149.75, 144.86 (d, *J* = 1.2 Hz), 135.59 (d, *J* = 0.9 Hz), 130.72 (d, *J* = 1.0 Hz), 124.20; ¹⁹F NMR (282 MHz, CDCl₃) δ = 42.05; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄BrFNO₃S, 255.9079; found 255.9080.


5-Bromopyridin-3-yl fluorosulfate (1-6) was prepared from 0.73 g of 5-bromopyridin-3-ol and isolated as a light yellow oil (0.86 g, 80% yield). ¹H NMR (300 MHz, CDCl₃) δ = 8.78 (s, 1H), 8.64 (d, *J* = 1.7 Hz, 1H), 7.93 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 151.26, 146.38, 140.86, 131.68, 120.71; ¹⁹F NMR (282 MHz, CDCl₃) δ = 38.71; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄BrFNO₃S, 255.9079; found 255.9076.

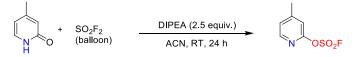
5-Bromo-6-chloropyridin-3-yl fluorosulfate (1-7) was prepared from 4.17 g of 5-bromo-6-chloropyridin-3-ol and isolated as a yellow oil (4.91 g, 85% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.46 (d, J = 2.2 Hz, 1H), 8.06 – 7.99 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 151.07, 144.83, 140.59, 135.00, 121.06; ¹⁹F NMR (282 MHz, CDCl₃) δ = 38.82; GC-MS (t_R): 8.13 min; EI-MS (m/z): 289 [M]⁺.

2-*Methoxycarbonyl-thiopen-3-yl fluorosulfate* (1-18) was prepared from 3.16 g of methyl 3-hydroxythiophene-2carboxylate and isolated as a yellow oil (4.47 g, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ = 7.60 (dd, *J* = 5.5, 1.6 Hz, 1H), 7.13 (d, *J* = 5.5 Hz, 1H), 3.93 (d, *J* = 1.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ = 159.80, 145.61, 130.90 (d, *J* = 7.4 Hz), 122.41, 121.93 (d, *J* = 5.5 Hz), 52.73 (d, *J* = 9.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = 39.63; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₆H₆FO₅S₂, 240.9641; found 240.9641.

Benzo[b]thiophen-4-yl fluorosulfate (1-19) was prepared from 1.32 g of methyl benzo[*b*]thiophen-4-ol and isolated as a yellow oil (1.42 g, 70% yield). ¹H NMR (500 MHz, CDCl₃) δ = 7.88 – 7.83 (m, 1H), 7.55 (d, *J* = 5.6 Hz, 1H), 7.45 (d, *J* = 5.6 Hz, 1H), 7.39 – 7.33 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ = 144.57, 142.73, 132.13, 129.22, 124.79, 123.03, 119.00, 116.29; ¹⁹F NMR (282 MHz, CDCl₃) δ = 38.00; GC-MS (t_R): 8.97 min; EI-MS

$(m/z): 232 [M]^+$.

General procedure for Preparation of heteroaryl fluorosulfates 1 with DIPEA in ACN.


A three-neck round-bottom flask equipped with a thermometer was charged with the corresponding hydroxyheterocycles, ACN (10 mL/g) and DIPEA (1.5 - 3 equiv.). The mixture was stirred at room temperature for 10 min. The reaction flask was then sealed with a septum. The atmosphere above the solution was removed with gentle vacuum, and SO₂F₂ gas (sulfuryl fluoride, Vikane) from a balloon was introduced through a three-way valve joint. For large scale reactions, depletion of the sulfuryl fluoride from the balloon was easily observed, and more SO₂F₂ gas was introduced with a fresh balloon when required. The reaction mixture was vigorously stirred at room temperature for 2-24 hours, monitoring by TLC. After completion, the solvent was removed by rotary evaporation. The residue was dissolved in EtOAc, washed with saturated sodium bicarbonate and brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give heteroaryl fluorosulfates **1**.

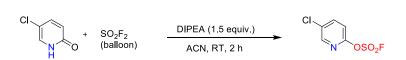
$$\begin{array}{c} & & \\ & &$$

Pyridin-2-yl fluorosulfate (1-8) was prepared from 95.1 g of 5yridine-2(1*H*)-one and isolated as a yellow oil (154.5 g, 87% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.42 (m, 1H), 7.93 (m, 1H), 7.42 (dd, *J* = 7.4, 4.9 Hz, 1H), 7.20 (d, *J* = 8.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 156.24 (d, *J* = 1.3 Hz), 148.50, 141.39, 124.39, 114.10 (d, *J* = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ 43.93; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₅FNO₃S, 177.9974; found 177.9970.

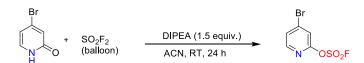
$$\begin{array}{c} & & \\ & &$$

3-Methylpyridin-2-yl fluorosulfate (1-9) was prepared from 0.55 g of 3-methylpyridin-2(1*H*)-one and isolated as a yellow oil (0.71 g, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.20 (d, *J* = 3.6, 1H), 7.73 (dd, *J* = 7.3, 0.5 Hz, 1H), 7.30 (dt, *J* = 9.8, 4.9 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 155.29 (d, *J* = 1.5 Hz), 145.75, 142.28, 124.45, 124.15 (d, *J* = 2.3 Hz), 15.57; ¹⁹F NMR (376 MHz, CDCl₃) δ 45.11; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₆H₇FNO₃S, 192.0131; found 192.0128.

4-Methylpyridin-2-yl fluorosulfate (1-10) was prepared from 1.09 g of 4-methylpyridin-2(1*H*)-one and isolated as a yellow oil (1.36 g, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.24 (d, *J* = 5.1 Hz, 1H), 7.22 (dd, *J* = 5.0, 0.4 Hz, 1H), 7.01 (s, 1H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ = 156.61 (d, *J* = 1.3 Hz), 153.73, 147.94, 125.46, 114.44 (d, *J*= 2.5 Hz), 21.01; ¹⁹F NMR (377 MHz, CDCl₃) δ = 43.63; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₆H₇FNO₃S, 192.0131; found 192.0131.

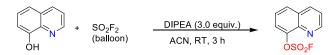

5-Methylpyridin-2-yl fluorosulfate (1-11) was prepared from 1.09 g of 5-methylpyridin-2(1*H*)-one and isolated as a yellow oil (1.86 g, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.28 – 8.12 (m, 1H), 7.72 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ = 154.51 (d, *J* = 1.5 Hz), 148.45, 141.76, 134.66, 113.69 (d, *J* = 2.5 Hz), 17.77 (d, *J* = 4.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = 43.21; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₆H₇FNO₃S, 192.0131; found 192.0130.

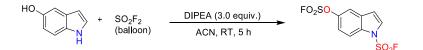
6-Methylpyridin-2-yl fluorosulfate (1-12) was prepared from 1.09 g of 6-methylpyridin-2(1*H*)-one and isolated as a yellow oil (1.75 g, 92% yield). ¹H NMR (500 MHz, CDCl₃) δ = 7.79 (t, *J* = 7.8 Hz, 1H), 7.27 (dd, *J* = 15.6, 4.1 Hz, 1H), 7.00 (d, *J* = 8.1 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ = 159.03, 155.54 (d, *J* = 1.2 Hz, 1H), 141.25, 123.93, 110.82 (d, *J* = 2.4 Hz), 23.85 (q, *J* = 3.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = 43.59; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₆H₇FNO₃S, 192.0131; found 192.0128.



4-Methoxycarbonyl-pyridin-2-yl fluorosulfate (1-13) was prepared from 0.39 g of 4-methoxycarbonyl-pyridin-2(1*H*)-one and isolated as a yellow oil (0.43 g, 72% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.57$ (d, J = 5.0 Hz, 1H), 7.97 (dd, J = 5.0, 1.0 Hz, 1H), 7.75 (s, 1H), 4.01 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) $\delta = 163.61$, 156.84, 149.51 (d, J = 3.2 Hz), 142.99, 123.76 (d, J = 2.8 Hz), 114.12 (d, J = 8.7 Hz), 53.36 (d, J =11.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) $\delta = 44.50$; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₇H₇FNO₅S, 236.0029; found 236.0026.

5-*Chloropyridin-2-yl fluorosulfate* (1-14) was prepared from 0.64 g of 5-chloropyridin-2(1*H*)-one and isolated as a colorless oil (0.95 g, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.36 (s, 1H), 7.89 (dd, *J* = 8.6, 2.5 Hz, 1H), 7.18 (dd, *J* = 8.6, 1.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 154.34 (d, *J* = 1.4 Hz, 1H), 147.33, 140.98, 132.51, 115.29 (d, *J* = 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ = 43.99; GC-MS (t_R): 6.94 min; EI-MS (m/z): 211 [M]⁺.


6-Bromopyridin-2-yl fluorosulfate (1-15) was prepared from 1.74 g of 6-bromopyridin-2(1*H*)-one and isolated as a colorless oil (2.17 g, 85% yield). ¹H NMR (500 MHz, CDCl₃) δ = 7.84 (t, *J* = 7.9 Hz, 1H), 7.70 – 7.57 (m, 1H), 7.29 – 7.16 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 154.43 (d, *J* = 1.3 Hz), 143.04, 139.52, 129.01, 113.04 (d, *J* = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ = 44.22; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄BrFNO₃S, 255.9079; found 255.9079.


4-Bromopyridin-2-yl fluorosulfate (1-16) was prepared from 0.35 g of 4-bromopyridin-2(1*H*)-one and isolated as a colorless oil (0.41 g, 79% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.26 (d, *J* = 5.3 Hz, 1H), 7.57 (dd, *J* = 5.2, 1.4 Hz, 1H), 7.44 – 7.34 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 156.37 (d, *J* = 1.4 Hz), 148.98, 136.36, 127.84, 117.71 (d, *J* = 2.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = 37.99; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄BrFNO₃S, 255.9079; found 255.9079.

2-Chloropyridin-4-yl fluorosulfate (1-17) was prepared from 1.04 g of 2-chloropyridin-4(1*H*)-one and isolated as a colorless oil (0.95 g, 79% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.57 (d, *J* = 5.6 Hz, 1H), 7.40 (d, *J* = 1.3 Hz, 1H), 7.31 (dd, *J* = 5.5, 1.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 157.17, 153.64, 152.10, 116.60, 114.62; ¹⁹F NMR (376 MHz, CDCl₃) δ = 40.59; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₅H₄CIFNO₃S, 211.9584; found 211.9583.

Quinolin-8-yl fluorosulfate (1-20) was prepared from 2.9 g of quinolin-8-ol and isolated as a colorless oil (4.43 g, 97% yield). ¹H NMR (500 MHz, CDCl₃) δ = 9.01 (d, *J* = 1.4 Hz, 1H), 8.19 (d, *J* = 8.3 Hz, 1H), 7.89 – 7.77 (m, 1H), 7.72 (d, *J* = 7.4 Hz, 1H), 7.60 – 7.53 (m, 1H), 7.51 – 7.48 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 151.87, 145.82, 140.35, 136.02, 129.98, 128.81, 125.91, 122.76, 121.33; ¹⁹F NMR (282 MHz, CDCl₃) δ = 40.19; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₉H₇FNO₃S, 228.0131; found 228.0128.

l-(Fluorosulfonyl)-1H-indol-5-yl fluorosulfate (1-21) was prepared from 0.66 g of 1*H*-indol-5-ol and isolated as a colorless oil (1.43 g, 97% yield). ¹H NMR (500 MHz, CDCl₃) δ = 7.99 (d, *J* = 9.1 Hz, 1H), 7.65 (s, 1H), 7.57 (d, *J* = 3.8 Hz, 1H), 7.42 (dd, *J* = 9.0, 1.5 Hz, 1H), 6.87 (d, *J* = 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 163.18 (d, *J* = 239.4 Hz), 145.91 (d, *J* = 14.9 Hz), 139.84 (d, *J* = 7.9 Hz), 136.77, 134.94 (d, *J* = 4.6 Hz), 128.27, 128.20 (d, *J* = 264.6 Hz), 109.55 (d, *J* = 37.8 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = 55.31, 36.75; GC-MS (t_R): 9.41 min; EI-MS (m/z): 297 [M]⁺.

3. Preparation of pyridinyl triflates 8 in Figure 3.

To a stirred solution of 0.35 g 6-bromopyridine-3-ol and TEA (1.5 equiv.) in DCM (10 mL/g), Tf₂O (1.25 equiv.) was added dropwise at the speed to keep the temperature of reaction mixture below 10 $^{\circ}$ C. The resulting mixture was then slowly warmed to room temperature and stirred for 3 h. And the reaction was monitored by TLC. Upon completion, the mixture washed with saturated sodium bicarbonate and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give pyridinyl triflates **8** as a white solid (0.56 g, 91% yield). mp 50-51 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.29 (d, *J* = 3.0 Hz, 1H), 7.55 (m, 1H), 7.48 (dd, *J* = 8.7, 3.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 146.37, 143.11, 141.04, 131.74, 129.63, 118.64 (q, *J* = 322.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ = -73.78; GC-MS (t_R): 5.96 min; EI-MS (m/z): 227 [M-Br]⁺.

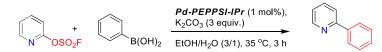
4. General procedures for Pd-catalyzed Suzuki reaction.

Method A. General Suzuki procedure associate with (aqueous) alcohol solution. Het-OSO₂F (1.0 mmol, 1.0 equiv), (hetero)arylboronic acid (1.5 mmol, 1.5 equiv), Pd-catalyst (1-10 mol%), base (3.0 mmol, 3.0 equiv) were successively added to a 50 mL flask equipped with a stirring bar and a thermometer. The air in the flask was replaced by nitrogen gas by vacuum, and then (aqueous) alcohol solution (with different ratios) (1-20mL) was injected into the flask through a rubber plug. The reaction mixture was placed into an oil bath, heated to the corresponding temperature and stirred for 1-24 hours as monitored by TLC or HPLC. After completion, most of organic solvent was removed by rotary evaporation. The residue was dissolved in EtOAc, washed with saturated brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the coupling product.

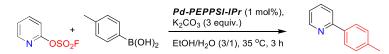
Method B. General Suzuki procedure associate with aqueous $NaHCO_3$ solution in 1,4-dioxane at room temperature.

Het-OSO₂F (1.0 mmol, 1.0 equiv), (hetero)arylboronic acid (1.5 mmol, 1.5 equiv), $Pd(PPh_3)_4$ (10 mol%) were successively added to a 50 mL flask equipped with a stirring bar and a thermometer. The air in the flask was replaced by nitrogen gas by vacuum, and then 1,4-dioxane (10 mL) was injected into the flask through a rubber plug. The reaction mixture was stirred for 10 min and then NaHCO₃ (3.0 mmol, 3 equiv) in 10 mL water was injected into the flask. The reaction mixture was stirred at room teperature for 3-24 hours as monitored by HPLC. After completion, the mixture was diluted with EtOAc (20mL), washed with saturated brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the coupling product.

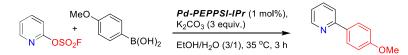
Method C. General Suzuki procedure associate with KF in toluene or 1,4-dioxane at refluxing temperature.

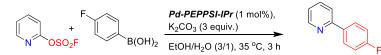

Het-OSO₂F (1.0 mmol, 1.0 equiv), arylboronic acid (1.5 mmol, 1.5 equiv), Pd(PPh₃)₄ (10 mol%), KF (3.0 mmol, 3.0 equiv) were successively added to a 50 mL flask equipped with a stirring bar and a thermometer. The air in the flask was replaced by nitrogen gas by vacuum, and then toluene or 1,4-dioxane (10 mL) was injected into the flask through a rubber plug. The reaction mixture was placed into an oil bath, heated to reflux for 3-10 hours as monitored by HPLC. After completion, the mixture was diluted with EtOAc (20mL), washed with saturated brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the coupled product.

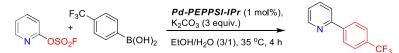
Entry	Conditions	Yield
1	Pd(PPh₃) ₄ , K ₂ CO ₃ , EtOH/H ₂ O(3/1), RT, 18h (10 mol% Cat., 0.05 M)	92%
2	Pd(PPh₃)₂Cl₂ , K ₂ CO ₃ , EtOH/H ₂ O(3/1), RT, 4h (10 mol% Cat., 0.05 M)	90%
3	Pd(dppf)Cl₂ , K ₂ CO ₃ , EtOH/H ₂ O(3/1), RT, 3h (10 mol% Cat., 0.05 M)	97%
4	Pd(dppf)Cl ₂ , K ₂ CO ₃ , EtOH/H ₂ O(3/1), RT, 17h (5 mol % Cat., 0.05 M)	81%
5	Pd(dppf)Cl ₂ , K ₂ CO ₃ , EtOH/H ₂ O(3/1), RT, 24h (2 mol% Cat., 0.05 M)	46%
6	Pd(OAc) ₂ , IPr.HCl , K ₂ CO ₃ , EtOH/H ₂ O(3/1), RT, 20h (10 mol% Cat., 0.05 M)	29% (50% ^b)
7	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(3/1), 35 °C, 3 h (1 mol% Cat., 0.1 M)	97%
8	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(2 / 1), 35 °C, 3.5 h (1% mol% Cat., 0.1 M)	87%
9	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(4 / 1), 35 °C, 3.5 h (1% Cat., 0.1 M)	96%
10	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH , 35 °C, 3.5 h (1 mol% Cat., 0.1 M)	96%
11	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , MeOH/H₂O (3/1), 35 °C, 3 h (1 mol% Cat., 0.1 M)	52%
12	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , <i>i</i> -PrOH/H ₂ O(3/1), 35 °C, 3 h (1 mol% Cat., 0.1 M)	83%
13	<i>Pd-PEPPSI-IPr</i> , Na₂CO₃ , EtOH/H ₂ O(3/1), 35 °C, 5 h (1 mol% Cat., 0.1 M)	91%
14	<i>Pd-PEPPSI-IPr</i> , Cs₂CO₃ , EtOH/H ₂ O(3/1), 35 °C, 3 h (1 mol% Cat., 0.1 M)	77%
15	<i>Pd-PEPPSI-IPr</i> , NaOH , EtOH/H ₂ O(3/1), 35 °C, 3 h (1 mol% Cat., 0.1 M)	56%
16	<i>Pd-PEPPSI-IPr</i> , K₃PO₄₃ , EtOH/H ₂ O(3/1), 35 °C, 3 h (1% Cat., 0.1 M)	90%
17	<i>Pd-PEPPSI-IPr</i> , TEA , EtOH/H ₂ O(3/1), 35 °C, 6 h (1 mol% Cat., 0.1 M)	85%
18	<i>Pd-PEPPSI-IPr</i> , DIPEA , EtOH/H ₂ O(3/1), 35 °C, 6 h (1 mol% Cat, 0.1 M)	87%
19	<i>Pd-PEPPSI-IPr</i> ,K ₂ CO ₃ , EtOH/H ₂ O(3/1), 25 °C, 6 h (1 mol% Cat, 0.1 M)	83%
20	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(3/1), 30 °C, 6 h (1 mol% Cat, 0.1 M)	90%
21	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(3/1), 40 °C, 2 h (1 mol% Cat, 0.1 M)	97%
22	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(3/1), 35 °C, 5 h (1 mol% Cat, 0.25 M)	96%
23	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(3/1), 35 °C, 5 h (1 mol% Cat, 0.5 M)	84%
24	<i>Pd-PEPPSI-IPr</i> , K ₂ CO ₃ , EtOH/H ₂ O(3/1), 35 °C, 5 h (1 mol% Cat, 1 M)	82%

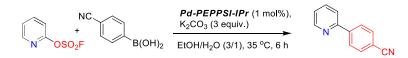

5. Table 1S Optimization of the Suzuki reaction of pyridin-2-yl fluorosulfate 1-8 with phenylboronic acid $2-1^{a}$

^a The best conditions for the coupling reaction were as follows: 1 mol% *Pd-PEPPSI-IPr* as catalyst, K_2CO_3 (3 equiv.) as base, EtOH/H₂O (3/1) to EtOH as solvent, reaction temperature from 35 °C to 40 °C, and substrate concentration from 0.1 M to 0.25 M. ^b Pd catalyst and ligand was added into EtOH and stirred for 10 min before other substrates were added.

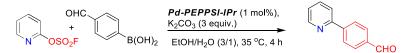

6. Suzuki coupling product $3-1 \sim 3-18$ in Table 2.


2-Phenylpyridine $(3-1)^{[3]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and pheylboronic acid (3-1) by method A and isolated as a light yellow oil (151 mg, 97% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.65 (d, J = 4.6 Hz, 1H), 8.03 – 7.91 (m, 2H), 7.67 – 7.54 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 7.10

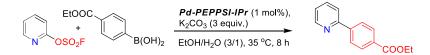

2-*p*-Tolylpyridine $(3-2)^{[3]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and *p*-tolylboronic acid (2-2) by *method A* and isolated as a light yellow oil (160 mg, 95% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.64 (d, J = 4.6 Hz, 1H), 7.88 (d, J = 8.1 Hz, 2H), 7.69 – 7.49 (m, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.17 – 6.96 (m, 1H), 2.34 (s, 3H).


2-(4-Methoxyphenyl)pyridine $(3-3)^{[3]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 4-methoxyphenylboronic acid (2-3) by method A and isolated as a white solid (177 mg, 96% yield). mp 55-56 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.65 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.01 – 7.92 (m, 2H), 7.68 (tdd, J = 7.9, 7.4, 1.4 Hz, 2H), 7.16 (ddd, J = 7.1, 4.8, 1.3 Hz, 1H), 7.03 – 6.95 (m, 2H), 3.85 (s, 3H).

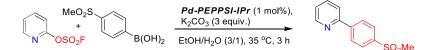
2-(4-Fluorophenyl)pyridine $(3-4)^{[3]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 4-fluorophenylboronic acid (2-4) by *method* A and isolated as a yellow solid (165 mg, 95% yield). mp 40-42 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.64 (s, 1H), 8.06 – 7.87 (m, 2H), 7.78 – 7.55 (m, 2H), 7.22 – 7.02 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ = -113.58.

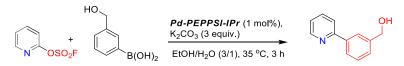


2-(4-(Trifluoromethyl)phenyl)pyridine $(3-5)^{[3]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 4-(trifluoromethyl)phenylboronic acid (2-5) by *method A* and isolated as a white solid (218 mg, 97% yield). mp 79-81 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.70 (d, *J* = 4.2 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 2H), 7.72 (dt, *J* = 13.3, 7.4 Hz, 4H), 7.32 – 7.17 (m, 1H); ¹⁹F NMR (377 MHz, CDCl₃) δ = -62.97.

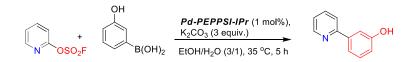


4-(Pyridin-2-yl)benzonitrile $(3-6)^{[3]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and

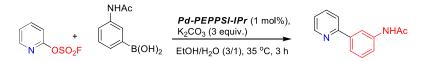

4-cyanophenylboronic acid (**2-6**) by *method A* and isolated as a white solid (169 mg, 94% yield). mp 94-96 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.74 (d, *J* = 4.1 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 2H), 7.82 (td, *J* = 7.8, 1.7 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 3H), 7.36 – 7.29 (m, 1H).


4-(*Pyridin-2-yl*)benzaldehyde $(3-7)^{[4]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 4-formylphenylboronic acid (2-7) by method A and isolated as a white solid (170 mg, 94% yield). mp 45-47 °C. ¹H NMR (500 MHz, CDCl₃) δ = 10.06 (s, 1H), 8.73 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 2H), 7.97 (d, *J* = 8.3 Hz, 2H), 7.78 (t, *J* = 6.0 Hz, 2H), 7.29 (dd, *J* = 8.7, 4.6 Hz, 1H).

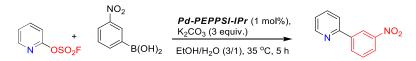
Ethyl 4-(*pyridin-2-yl*)*benzoate* (3-8)^[5] was prepared from pyridin-2-yl fluorosulfate (1-8) and 4-(ethoxycarbonyl)phenylboronic acid (2-8) by *method* A with pure ethanol as the solvent and isolated as a pale yellow solid (209 mg, 92% yield). mp. 55-56°C. ¹H NMR (500 MHz, CDCl₃) δ = 8.71 (dd, J = 3.5, 1.2 Hz, 1H), 8.18 – 8.11 (m, 2H), 8.06 (d, J = 8.5 Hz, 2H), 7.78 – 7.74 (m, 2H), 7.28 – 7.21 (m, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H).



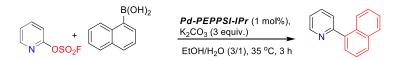
2-(4-(methylsulfonyl)phenyl)pyridine (3-9)^[6] was prepared from pyridin-2-yl fluorosulfate (1-8) and 4-(methylsulfonyl)phenylboronic acid (2-9) by method A and isolated as a yellow crystal (220 mg, 94% yield). mp 130-134°C. ¹H NMR (500 MHz, CDCl₃) δ = 8.73 (d, J = 4.4 Hz, 1H), 8.20 (d, J = 8.3 Hz, 2H), 8.04 (d, J = 8.3 Hz, 2H), 7.91 - 7.76 (m, 2H), 7.33 (t, J = 5.1 Hz, 1H), 3.10 (s, 3H).



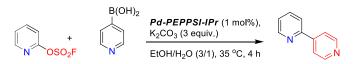
(3-(Pyridin-2-yl)phenyl)methanol $(3-10)^{[7]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 3-(hydroxymethyl)phenylboronic acid (2-10) by *method A*, purified by *n*-hexane and *tert*-butyl methyl ether (MTBE), and isolated as a light yellow oil gummy (183 mg, 99% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.53 (dd, J = 2.3, 1.4 Hz, 1H), 7.83 (s, 1H), 7.74 (d, J = 7.0 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.58 – 7.50 (m, 1H), 7.36 – 7.22


(m, 2H), 7.17 – 7.05 (m, 1H), 5.01 (s, 1H), 4.61 (s, 2H).

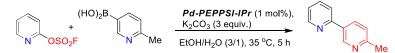
3-(*pyridin-2-yl*)*phenol* (3-11)^[8] was prepared from pyridin-2-yl fluorosulfate (1-8) and 3-hydroxyphenylboronic acid (2-11) by *method* A, purified by *n*-hexane and acetone, and isolated as a white solid (125 mg, 73% yield). mp 100-102 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.64 (dd, J = 4.9, 0.8 Hz, 1H), 7.74 (td, J = 7.8, 1.7 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 1.7 Hz, 1H), 7.37 (d, J = 7.7 Hz, 1H), 7.31 – 7.19 (m, 2H), 6.90 – 6.81 (m, 1H).


N-(*3*-(*pyridin-2-yl*)*phenyl*)*acetamide* (*3*-*12*)^[9] was prepared from pyridin-2-yl fluorosulfate (**1-8**) and 3-acetamidophenylboronic acid (**2-12**) by *method A*, purified by *n*-hexane and MTBE, and isolated as a white solid (207 mg, 98% yield). mp 134-135 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.63 (d, *J* = 4.3 Hz, 1H), 8.36 (s, 1H), 8.12 (s, 1H), 7.72 – 7.60 (m, 4H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.19 (t, *J* = 5.5 Hz, 1H), 2.10 (s, 3H).

2-(3-nitrophenyl)pyridine (3-13)^[9, 10] was prepared from pyridin-2-yl fluorosulfate (1-8) and 3-nitrophenylboronic acid (2-13) by *method A*, purified by *n*-hexane and MTBE, and isolated as a white solid (186 mg, 93% yield). mp 71-73 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.87 (t, *J* = 1.8 Hz, 1H), 8.75 (d, *J* = 4.5 Hz, 1H), 8.38 (d, *J* = 7.8 Hz, 1H), 8.32 – 8.23 (m, 1H), 7.88 – 7.78 (m, 2H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.34 (ddd, *J* = 6.7, 4.8, 2.1 Hz, 1H).

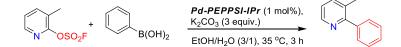


(*E*)-2-styrylpyridine $(3-14)^{[11]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and (E)-styrylboronic acid (2-14) by *method* A and isolated as a yellow solid (150 mg, 83% yield). mp 91-93 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.61 (d, *J* = 4.4 Hz, 1H), 7.70 – 7.61 (m, 2H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 3H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.21 – 7.11 (m, 2H).

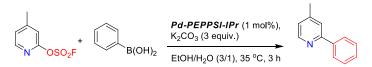


2-(*Naphthalen-1-yl*)*pyridine* $(3-15)^{[12]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and naphthalen-1-ylboronic acid (2-15) by *method* A and isolated as a light yellow oil (188 mg, 92% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.82 - 8.76 (m, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.82 (td, *J* = 7.7, 1.8 Hz, 1H), 7.57 (ddd, *J* = 16.8, 11.8, 7.7 Hz, 3H), 7.52 - 7.42 (m, 2H), 7.37 - 7.29 (m, 1H).

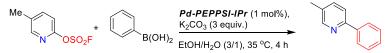
 $5-(Pyridin-2-yl)furan-2-carbaldehyde (3-16)^{[13]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 5-formylfuran-2-ylboronic acid (2-16) by *method* A and isolated as a yellow solid (132 mg, 77% yield). mp 94-96 °C. ¹H NMR (500 MHz, CDCl₃) $\delta = 9.72$ (s, 1H), 8.66 (d, J = 4.1 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 3.6 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.27 (d, J = 3.3 Hz, 1H).

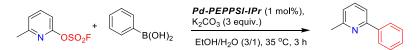


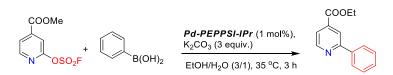
2,4'-Bipyridine (3-17) ^[14] was prepared from pyridin-2-yl fluorosulfate (1-8) and pyridin-4-ylboronic acid (2-17) by *method* A using 1,4-dioxane/H₂O(3/1) instead of EtOH/H₂O(3/1) at refluxing temperature and isolated as a yellow solid (113 mg, 72% yield). mp 64-65 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.74 (ddd, J = 8.3, 4.6, 1.2 Hz, 3H), 7.90 (dd, J = 4.5, 1.6 Hz, 2H), 7.87 – 7.77 (m, 2H), 7.34 (ddd, J = 6.3, 4.8, 2.3 Hz, 1H).



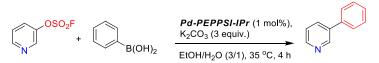
6'-Methyl-2,3'-bipyridine $(3-18)^{[15]}$ was prepared from pyridin-2-yl fluorosulfate (1-8) and 6-methylpyridin-3-ylboronic acid (2-18) by *method* A using 1,4-dioxane/H₂O(3/1) instead of EtOH/H₂O(3/1) at refluxing temperature and isolated as a white solid (142 mg, 84% yield). mp 101-102 °C. ¹H NMR (500 MHz, CDCl₃) $\delta = 9.07$ (d, J = 1.9 Hz, 1H), 8.70 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.21 (dd, J = 8.1, 2.3 Hz, 1H), 7.79 – 7.73 (m, 1H), 7.73 – 7.69 (m, 1H), 7.29 – 7.20 (m, 2H), 2.62 (s, 3H).


7. Suzuki coupling product $4-1 \sim 4-11$ in Table 3.

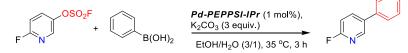

3-Methyl-2-phenylpyridine (*4-1*)^[16] was prepared from 3-methylpyridin-2-yl fluorosulfate (*1-9*) and phenylboronic acid (*2-1*) by *method A* with 2 mol% Pd-catalyst and isolated as a light yellow oil (113 mg, 67% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.53 (d, *J* = 4.5 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.45 (dd, *J* = 10.9, 3.7 Hz, 2H), 7.42 – 7.35 (m, 1H), 7.18 (dd, *J* = 6.4, 5.0 Hz, 1H), 2.36 (s, 3H).


4-Methyl-2-phenylpyridine $(4-2)^{[3]}$ was prepared from 4-methylpyridin-2-yl fluorosulfate (1-10) and phenylboronic acid (2-1) by *method A* and isolated as a colorless oil (162 mg, 96% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.55$ (d, J = 4.9 Hz, 1H), 7.97 (d, J = 7.3 Hz, 2H), 7.54 (s, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 4.5 Hz, 1H), 2.41 (s, 3H).

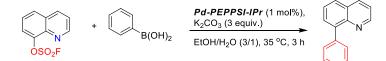
5-Methyl-2-phenylpyridine $(4-3)^{[17]}$ was prepared from 5-methylpyridin-2-yl fluorosulfate (1-11) and phenylboronic acid (2-1) by method A and isolated as a light yellow oil (162 mg, 96% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.52 (s, 1H), 8.04 – 7.87 (m, 2H), 7.61 (d, J = 8.1 Hz, 1H), 7.53 (dd, J = 8.1, 1.4 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 2.35 (s, 3H).

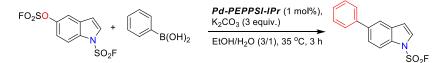


6-Methyl-2-phenylpyridine $(4-4)^{[16]}$ was prepared from 6-methylpyridin-2-yl fluorosulfate (1-12) and phenylboronic acid (2-1) by method A and isolated as a light yellow oil (167 mg, 99% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.05 (d, *J* = 7.9 Hz, 2H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.54 (t, *J* = 7.0 Hz, 2H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 2.70 (s, 3H).

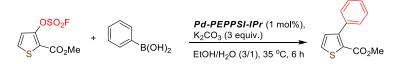


Ethyl 2-phenylisonicotinate (4-5)^[18] was prepared from 4-methoxycarbonyl-pyridin-2-yl fluorosulfate (1-13)

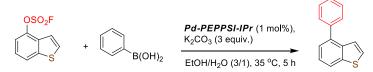

and phenylboronic acid (**2-1**) by *method A* and isolated as a white solid (194 mg, 86% yield). mp 42-44 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.83 (d, *J* = 5.0 Hz, 1H), 8.29 (s, 1H), 8.05 (d, *J* = 7.7 Hz, 2H), 7.77 (d, *J* = 5.0 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.1 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H).


3-Phenylpyridine (4-6) ^[12] was prepared from pyridin-3-yl fluorosulfate (1-1) and phenylboronic acid (2-1) by *method A* and isolated as a yellow oil (152 mg, 98% yield). ¹H NMR (500 MHz, cdcl₃) δ = 8.86 (s, 1H), 8.60 (d, J = 4.6 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.41 (t, J = 6.8 Hz, 1H), 7.39 – 7.31 (m, 1H).

2-Fluoro-5-phenylpyridine $(4-7)^{[19]}$ was prepared from 6-fluoropyridin-3-yl fluorosulfate (1-2) and phenylboronic acid (2-1) by method A and isolated as a yellow oil (155 mg, 90% yield). ¹H NMR (500 MHz, CDCl₃) $\delta = 8.41$ (s, 1H), 7.95 (td, J = 8.3, 2.5 Hz, 1H), 7.52 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.41 (q, J = 7.7 Hz, 1H), 6.99 (dd, J = 8.4, 2.8 Hz, 1H).

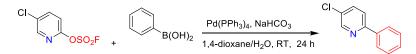


8-*Phenylquinoline* $(4-8)^{[20]}$ was prepared from quinolin-8-yl fluorosulfate (1-20) and phenylboronic acid (2-1) by *method A* and isolated as a yellow oil (189 mg, 92% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.92 (s, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 7.0 Hz, 3H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.0 Hz, 2H), 7.39 (t, *J* = 6.9 Hz, 1H), 7.36 – 7.29 (m, 1H).

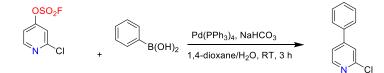


5-Phenyl-1H-indole-1-sulfonyl fluoride (4-9) was prepared from 1-(Fluorosulfonyl)-1H-indol-5-yl fluorosulfate (1-21) and phenylboronic acid (2-1) by method A and isolated as a white solid (251 mg, 87% yield). mp 98-99 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.95 (d, J = 8.7 Hz, 1H), 7.81 (s, 1H), 7.65 (dd, J = 8.6, 1.5

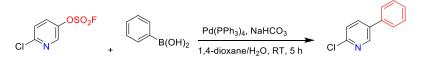
Hz, 1H), 7.61 (d, J = 7.4 Hz, 2H), 7.46 (dd, J = 13.6, 5.6 Hz, 3H), 7.38 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) $\delta = 140.83$, 138.59, 134.27, 131.03, 129.05, 127.59, 126.81, 126.72, 125.54, 120.47 (d, J = 6.0 Hz), 113.87, 111.37; ¹⁹F NMR (377 MHz, CDCl₃) $\delta = 53.96$; GC-MS (t_R): 12.04 min; EI-MS (m/z): 275 [M]⁺.



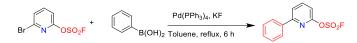
Methyl 3-phenylthiophene-2-carboxylate (4-10) ^[21] was prepared from 2-methoxycarbonyl-thiopen-3yl fluorosulfate (1-18) and phenylboronic acid (2-1) by *method A* and isolated as a yellow solid (214 mg, 98% yield). mp 120-122 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.49 (d, *J* = 5.1 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.43 – 7.34 (m, 3H), 7.08 (d, *J* = 5.1 Hz, 1H), 3.77 (s, 3H).



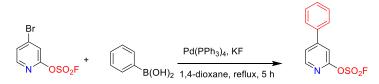
4-Phenylbenzo[b]thiophene (4-11) was prepared from Benzo[b]thiophen-4-yl fluorosulfate (1-19) and phenylboronic acid (2-1) by method A and isolated as a white solid (193 mg, 92% yield). mp 37-38 °C. ¹H NMR (500 MHz, CDCl₃) δ = 7.96 (d, J = 7.7 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.62 – 7.52 (m, 3H), 7.47 (m, 4H). GC-MS (t_R): 11.44 min; EI-MS (m/z): 210 [M]⁺.


8. Selective Suzuki coupled product $6-1 \sim 6-3$ in Figure 3A.

5-*Chloro-2-phenylpyridine* (6-1) ^[22] was prepared from 5-chloropyridin-2-yl fluorosulfate (1-14) and phenylboronic acid (2-1) by *method B* and isolated as a white solid (173 mg, 91% yield). mp 63-64 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.62 (d, *J* = 2.0 Hz, 1H), 7.93 (d, *J* = 7.3 Hz, 2H), 7.65 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 1H).

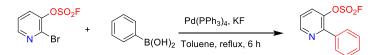


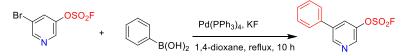
2-*Chloro-4-phenylpyridine* (6-2) ^[23] was prepared from 2-chloropyridin-4-yl fluorosulfate (1-17) and phenylboronic acid (2-1) by *method B* and isolated as a white solid (177 mg, 93% yield). mp 69-70 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.59 (d, *J* = 2.4 Hz, 1H), 7.82 (dd, *J* = 8.3, 2.6 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.39 (dd, *J* = 7.9, 4.8 Hz, 1H).



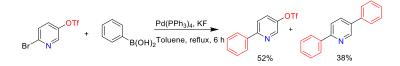
2-*Chloro-5-phenylpyridine* (6-3) ^[24] was prepared from 6-chloropyridin-3-yl fluorosulfate (1-3) and phenylboronic acid (2-1) by *method B* and isolated as a white solid (182 mg, 96% yield). mp 53-54 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.59 (d, *J* = 2.4 Hz, 1H), 7.82 (dd, *J* = 8.3, 2.6 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 7.39 (t, *J* = 5.7 Hz, 1H).

9. Selective Suzuki coupled product $7-1 \sim 7-5$ in Figure 3B.


6-*Phenylpyridin-2-yl fluorosulfate (7-1)* was prepared from 6-bromopyridin-2-yl fluorosulfate (1-15) and phenylboronic acid (2-1) by *method C* and isolated as a yellow oil (216 mg, 85% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.04 (d, *J* = 7.3 Hz, 2H), 7.94 (t, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.57 – 7.42 (m, 3H), 7.08 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ = 156.98, 156.15, 141.87, 136.60, 130.34, 129.08, 127.08, 119.98, 111.62; ¹⁹F NMR (377 MHz, CDCl₃) δ = 44.60; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₁H₉FNO₃S, 254.0287; found 254.0284.


4-Phenylpyridin-2-yl fluorosulfate (7-2) was prepared from 4-bromopyridin-2-yl fluorosulfate (1-16) and phenylboronic acid (2-1) by *method C* and isolated as a yellow oil (209 mg, 83% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.44 (d, *J* = 5.2 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.61 (dd, *J* = 5.2, 0.7 Hz, 1H), 7.53 (dt, *J* = 10.8, 3.9 Hz, 3H), 7.37 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 157.27, 154.51, 148.88, 136.35, 130.37, 129.59, 127.25, 122.44, 111.78 (d, *J* = 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ = 44.03; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₁H₉FNO₃S, 254.0287; found 254.0258.

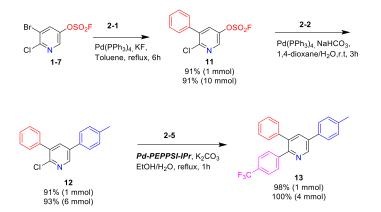
6-*Phenylpyridin-3-yl fluorosulfate (7-3)* was prepared from 6-bromopyridin-3-yl fluorosulfate (1-4) and phenylboronic acid (2-1) by *method C* and isolated as a yellow oil (231 mg, 91% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.72 (d, *J* = 2.8 Hz, 1H), 8.06 – 7.94 (m, 2H), 7.85 (dd, *J* = 8.8, 0.6 Hz, 1H), 7.76 (ddd, *J* = 8.8, 2.8, 0.7 Hz, 1H), 7.57 – 7.40 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ = 157.82, 146.05, 142.23, 137.49, 129.93, 129.31, 129.01, 127.17, 121.43; ¹⁹F NMR (377 MHz, CDCl₃) δ = 37.86; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₁H₉FNO₃S, 254.0287; found 254.0296.



2-Phenylpyridin-3-yl fluorosulfate (7-4) was prepared from 2-bromopyridin-3-yl fluorosulfate (1-5) and phenylboronic acid (2-1) by method C and isolated as a yellow oil (218 mg, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.75 (d, *J* = 4.6 Hz, 1H), 7.87 – 7.74 (m, 3H), 7.58 – 7.44 (m, 3H), 7.39 (dd, *J* = 8.3, 4.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 151.97, 149.73, 144.86, 135.08, 130.11, 129.92, 129.10, 128.81, 123.63; ¹⁹F NMR (377 MHz, CDCl₃) δ = 40.73; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₁H₉FNO₃S, 254.0287; found 254.0296.

5-*Phenylpyridin-3-yl fluorosulfate (7-5)* was prepared from 5-bromopyridin-3-yl fluorosulfate (1-6) and phenylboronic acid (2-1) by *method C* and isolated as a yellow oil (209 mg, 82% yield). ¹H NMR (500 MHz, CDCl₃) δ = 8.91 (s, 1H), 8.65 (s, 1H), 7.87 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 2H), 7.50 – 7.44 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 148.30, 147.35, 140.81, 138.88, 135.45, 129.52, 129.36, 127.40, 126.82; ¹⁹F NMR (377 MHz, CDCl₃) δ = 38.23; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₁H₉FNO₃S, 254.0287; found 254.0299.

10. Suzuki coupled product 9 and 10 in Figure 3C.



6-Phenylpyridin-3-yl triflate (9) and 2,5-diphenylpyridine (10) was prepared from 6-bromopyridin-3-yl fluorosulfate (8) and phenylboronic acid (2-1) by method C and isolated as a white solid (161 mg, 52% yield) and a white solid (87 mg, 38% yield).

6-*Phenylpyridin-3-yl triflate* (9):^[25] mp 94-95 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.64 (d, *J* = 2.7 Hz, 1H), 7.97 (d, *J* = 6.9 Hz, 2H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.66 (dd, *J* = 8.8, 2.8 Hz, 1H), 7.53 – 7.41 (m, 3H); ¹⁹F NMR (377 MHz, CDCl₃) δ = -72.96.

2,5-Diphenylpyridine (10):^[3] mp 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.94 (s, 1H), 8.05 (d, *J* = 7.8 Hz, 2H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.2 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 4H), 7.42 (dd, *J* = 13.7, 6.6 Hz, 2H).

11. Preparation of tri-substituted pyridine 13 in Figure 4A.

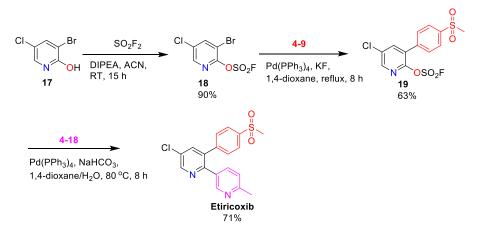

6-*Chloro-5-phenylpyridin-3-yl fluorosulfate* (11) was prepared from 5-bromo-6-chloropyridin-3-yl fluorosulfate (1-7) and phenylboronic acid (2-1) by *method C* and isolated as a yellow oil (263 mg, 91% yield; 10 mmol-scale: 2.60 g, 91%). ¹H NMR (400 MHz, CDCl₃) $\delta = 8.46$ (d, J = 2.7 Hz, 1H), 7.71 (d, J = 2.7 Hz, 1H), 7.57 – 7.36 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 149.34$, 145.89, 140.61, 138.93, 135.48, 132.03, 129.31, 129.18, 128.71; ¹⁹F NMR (282 MHz, CDCl₃) $\delta = 38.37$; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₁H₈CIFNO₃S, 287.9897; found 287.9880.

2-Chloro-3-phenyl-5-p-tolylpyridine (12) was prepared from 6-chloro-5-phenylpyridin-3-yl fluorosulfate (11) and p-tolylboronic acid (2-2) by *method B* and isolated as a white solid (254 mg, 91% yield; 6 mmol-scale: 1.55 g, 93%). mp 100-101 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.59 (d, J = 2.4 Hz, 1H), 7.84 (d, J = 2.4 Hz, 1H), 7.53 – 7.41 (m, 7H), 7.29 (d, J = 7.9 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

= 147.86, 146.04, 138.32, 137.55, 137.27, 136.41, 135.60, 133.07, 129.76, 129.16, 128.19, 126.67, 21.03; HRMS (ESI-TOF) (m/z): $[M + H]^+$ calcd for C₁₈H₁₅ClN, 280.0893; found 280.0879.

3-Phenyl-5-p-tolyl-2-(4-(trifluoromethyl)phenyl)pyridine (13) was prepared from 2-Chloro-3-phenyl-5-p-tolylpyridine (12) and 4-(trifluoromethyl)phenylboronic acid (2-5) by method A and isolated as a white solid (382 mg, 98% yield, 4 mmol-scale: 1.56 g, 100%). mp 54-55 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.92 (s, 1H), 7.89 (s, 1H), 7.56 – 7.45 (m, 6H), 7.27 (m, 5H), 7.20 (d, *J* = 2.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 153.88, 146.78, 143.56, 139.41, 138.43, 136.76, 136.28, 135.61, 134.15, 130.30, 129.97, 129.58, 128.66, 127.71, 127.00, 125.61, 124.88, 124.84, 122.91, 21.20; ¹⁹F NMR (377 MHz, CDCl₃) δ = -63.07; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₂₅H₁₉F₃N, 390.1470; found 390.1460.

12. Preparation of tri-substituted pyridine 16 in Figure 4B.


6-*Chloro-5-(3-(hydroxymethyl)phenyl)pyridin-3-yl* fluorosulfate (14) was prepared from 5-bromo-6-chloropyridin-3-yl fluorosulfate (1-7) and 3-(hydroxymethyl)phenylboronic acid (2-10) by *method C* with 1.05 equiv. 2-10 and isolated as a light yellow solid (282 mg, 89% yield). mp 54-55 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.46 (d, *J* = 2.7 Hz, 1H), 7.71 (d, *J* = 2.8 Hz, 1H), 7.49 (dd, *J* = 13.9, 7.5 Hz, 3H), 7.44 – 7.36 (m, 1H), 4.79 (s, 2H), 2.14 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 149.08, 145.79, 141.68, 140.48, 138.78, 135.43, 132.11, 128.70, 128.10, 127.60, 127.37, 64.24; ¹⁹F NMR (282 MHz, CDCl₃) δ = 38.52; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₂H₁₀clFNO₄S, 318.0003; found 317.9986.

(3-(6-Chloro-6'-methyl-3,3'-bipyridin-5-yl)phenyl)methanol(15)waspreparedfrom6-chloro-5-(3-(hydroxymethyl)phenyl)pyridin-3-ylfluorosulfate(14)and6-methylpyridin-3-ylboronic acid(2-18)by method B at refluxing temperature and isolated as a white solid(279 mg, 90% yield).mp124-127 °C. ¹H NMR (500 MHz, CD₃OD) δ = 8.75 (d, J = 2.0 Hz, 1H), 8.65 (d, J = 2.5 Hz, 1H), 8.07 (dd, J = 7.3, 2.4 Hz, 2H), 7.52 (s, 1H), 7.50 - 7.40 (m, 4H), 4.69 (s, 2H), 2.59 (s, 3H); ¹³C NMR (101 MHz, CD₃OD) δ = 159.58, 147.57, 147.19, 143.28, 139.56, 138.70, 138.46, 137.20, 134.18, 131.05, 129.52,

129.34, 128.90, 128.14, 125.39, 64.88, 23.53; HRMS (ESI-TOF) (m/z): $[M + H]^+$ calcd for C₁₈H₁₆ClN₂O, 311.0951; found 311.0936.

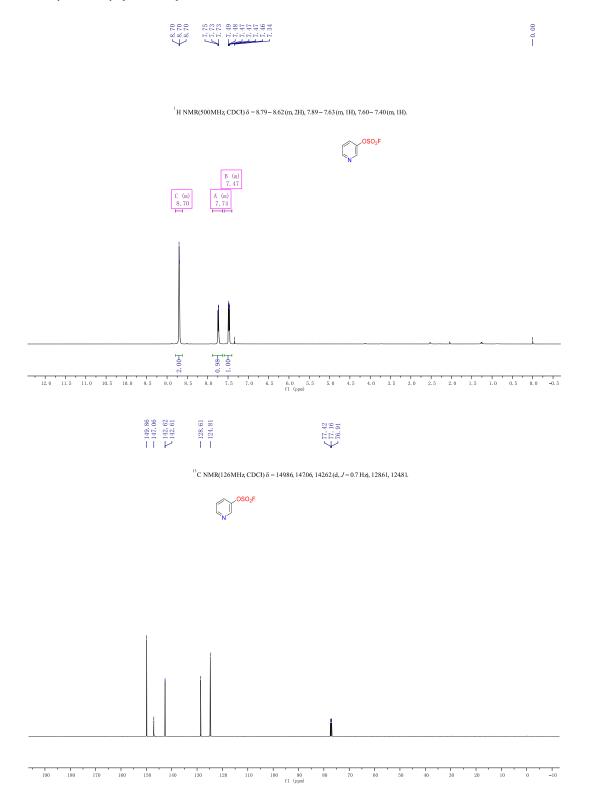
5-(5-(3-(Hydroxymethyl)phenyl)-6'-methyl-3,3'-bipyridin-6-yl)furan-2-carbaldehyde (16) was prepared from (3-(6-chloro-6'-methyl-3,3'-bipyridin-5-yl)phenyl)methanol (15) and 5-formylfuran-2-ylboronic acid (2-16) by method *A* and isolated as a white solid (338 mg, 91% yield). mp151-152 °C. ¹H NMR (500 MHz, CDCl₃) δ = 9.54 (s, 1H), 8.92 (d, *J* = 2.2 Hz, 1H), 8.77 (d, *J* = 2.0 Hz, 1H), 7.85 (dt, *J* = 4.3, 2.3 Hz, 2H), 7.52 – 7.42 (m, 3H), 7.30 (d, *J* = 8.0 Hz, 0H), 7.23 (d, *J* = 7.3 Hz, 0H), 7.15 (d, *J* = 3.7 Hz, 1H), 6.56 (d, *J* = 3.6 Hz, 1H), 4.78 (s, 2H), 2.83 (s, 1H), 2.63 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 178.23, 158.80, 157.08, 152.33, 147.14, 146.72, 144.47, 142.05, 138.49, 136.89, 136.66, 134.80, 132.85, 129.49, 128.79, 127.85, 127.72, 127.08, 123.72, 121.05, 114.22, 64.66, 24.17; HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₂₃H₁₉N₂O₃, 371.1396; found 371.1379.

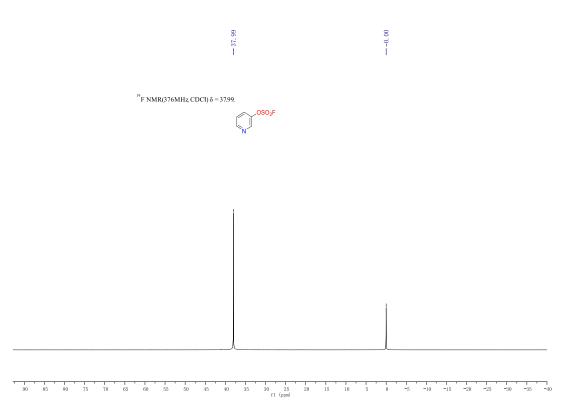
13. Preparation of Etoricoxib in Scheme 2B.

3-Bromo-5-chloropyridin-2-yl fluorosulfate (18) was prepared from 0.76 g 3-bromo-5-chloropyridin-2-ol by General procedure for Preparation of heteroaryl fluorosulfates 1 with DIPEA in ACN and isolated as a white solid (0.95 g, 90% yield). mp 29-30 $^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ = 8.29 (d, J = 2.3 Hz, 1H), 8.10 (d, J = 2.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 151.36, 145.42, 143.69, 132.52, 110.26 (d, J = 3.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ = 46.62; GC-MS (t_R): 8.30 min; EI-MS (m/z): 289 [M]⁺.

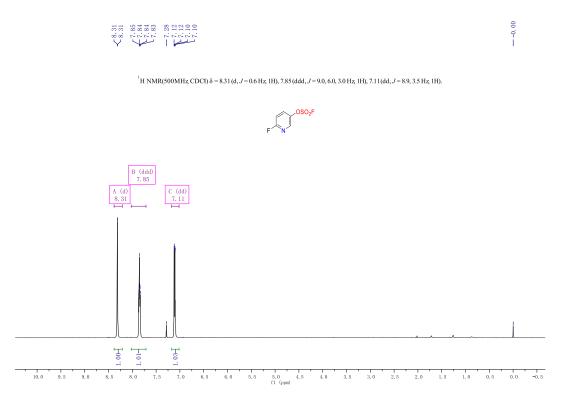
5-chloro-3-(4-(methylsulfonyl)phenyl)pyridin-2-yl fluorosulfate (19) was prepared from 290 mg 3-Bromo-5-chloropyridin-2-yl fluorosulfate (18) and 4-(methylsulfonyl)phenylboronic acid (2-9) by method C with 1.5 equiv. 2-9 and 5 equiv. KF, and isolated as a white solid (230 mg, 63% yield). mp141-143 ⁰C. ¹H NMR (400 MHz, CDCl₃) δ = 8.40 (d, J = 2.3 Hz, 1H), 8.10 (d, J = 8.3 Hz, 2H), 7.94 (d, J = 2.3 Hz, 1H), 7.70 (d, J = 8.3 Hz, 2H), 3.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 151.05, 146.59, 141.58, 141.16, 137.70, 132.64, 130.10, 128.26, 127.47 (d, J = 2.3 Hz), 44.52; ¹⁹F NMR (377 MHz, CDCl₃) δ = 46.93; HRMS (ESI-TOF) (m/z): $[M + H]^+$ calcd for C₁₂H₁₀ClFNO₅S₂, 365.9673; found 365.9667.

5-*chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-2,3'-bipyridine*^[26] (Etoricoxib) was prepared from 183 mg 5-chloro-3-(4-(methylsulfonyl)phenyl)pyridin-2-yl fluorosulfate (**19**) and 6-methylpyridin-3-ylboronic acid (**2-18**) by *method B* with 1.5 equiv. **2-18** at 80 °C and isolated as a white solid (127 mg, 71% yield). mp132-134 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.72 (d, *J* = 2.2 Hz, 1H), 8.39 (s, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 2.2 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 1H), 3.09 (s, 3H), 2.55 (s, 3H); HRMS (ESI-TOF) (m/z): [M + H]⁺ calcd for C₁₈H₁₆ClN₂O₂S, 359.0621; found 359.0622.

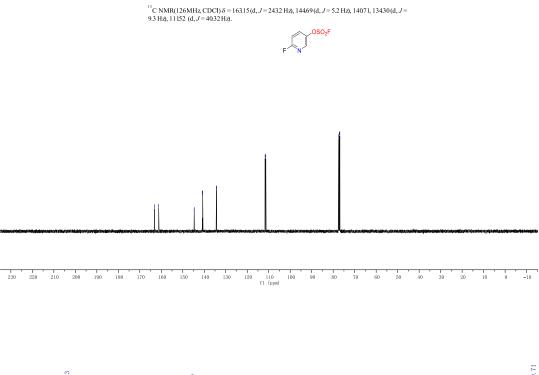

13. References

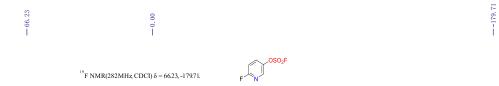

- [1] T. Umemoto, G. Tomizawa, J. Org. Chem. 1989, 54, 1726-1731.
- [2] O. Rahman, T. Kihlberg, B. Langstroem, J. Org. Chem. 2003; 68; 3558-3562.
- [3] Y. Shen, J Chen, M. Liu, J. Ding, W. Gao, X. Huang, H. Wu, Chem. Commun. 2014, 50, 4292-4295.
- [4] L.Vandromme, H.-U.Reissig, S. Groeper, J. P. Rabe, Eur. J. Org. Chem. 2008, 2049-2055.
- [5] J. R. Colombe, S. Bernhardt, C. Stathakis, S. L. Buchwald, P. Knochel, Org. Lett. 2013, 15, 5754-5757.
- [6] E. C. Constable, C. D. Ertl, C. E. Housecroft, J. A. Zampese, Dalton Trans. 2014, 43, 5343-5356.
- [7] M. A. Ali, X. Yao, H. Sun, H. Lu, Org. Lett. 2015, 17, 1513-1516.
- [8] S.-H. Kim, R. D. Rieke, Tetrahedron, 2010, 66, 3135-3146.
- [9] A. R. Katritzkyd, J. Short, A. J. Boulton, J. Chem. Soc. 1940, 1279-1284.
- [10] J. Wen, S. Qin, L.-F. Ma, L. Dong, J. Zhang, S.-S. Liu, Y.-S. Duan, S.-Y. Chen, C.-W. Hu, X.-Q. Yu, *Org. Lett.* **2010**, *12*, 2694-2697.
- [11] P. Liu, Y. Pan, K. Hua, X. Huang, Y. Liang, H. Wang, Tetrahedron, 2013, 69, 7925-7930.
- [12] O. Kobayashi, D. Uraguchi, T. Yamakawa, Org. Lett. 2009, 11, 2679-2682.
- [13] S.-H. Kim, R. D. Rieke, J. Org. Chem. 2013, 78, 1984–1993.
- [14] X. Li, D. Zou, F. Leng, C. Sun, J. Li, Y. J. Wu, Y. S. Wu, Chem. Commun. 2013, 49, 312-314.
- [15] W. R. Kem, J. Rocca, H. M. Garraffo, T. F. Spande, J. W. Daly, F. Soti, Heterocycles 2009, 79, 1025-1041.
- [16] T. J. Donohoe, J. A. Basutto, J. F. Bower, A. Rathi, Org. Lett. 2011, 13, 1036-1039.
- [17] T. Nokami, Y. Tomida, T. Kamei, K. Itami, J. Yoshida, Org. Lett. 2006, 8, 729-731.
- [18] T. Sakaguchi, T. Kobayashi, S. Hatano, H. Tsuchikawa, K. Fukase, K. Tanaka, S. Katsumura, *Chemistry An Asian Journal*, **2009**, *4*, 1573-1577.
- [19] G. A. Molander, L. Iannazzo, J. Org. Chem. 2011, 76, 9182-9187.
- [20] Y. Zhang, J. Gao, W. Li, H. Lee, B. Z. Lu, C. H. Senanayake, J. Org. Chem. 2011, 76, 6394-6400.
- [21] M. Raduan, J. Padrosa, A. Plaquintana, T. Parella, A. Roglans, Adv. Synth. Catal. 2011, 353, 2003-2012.
- [22] O. M. Kuzmina, A. K. Steib, D. Flubacher, P. Knochel, Org. Lett. 2012, 14, 4818-4821.

- [23] D. Qiu, L. Jin, Z. Zheng, H. Meng, F. Mo, X. Wang, Y. Zhang, J. Wang, J. Org. Chem. 2013, 78, 1923-1933.
 [24] N. Kudo, M. Perseghini, G. C. Fu, Angew. Chem. Int. Ed. 2006, 45, 1282-1284.
- [25] T. J. Donohoe, L. P. Fishlock, J. A. Basutto, J. F. Bower, P. A. Procopioub, A. L. Thompsonza, *Chem. Commun.* 2009, 45, 3008-3010.
- [26] I. W. Davies, J.-F. Marcoux, E. G. Corley, M. Journet, D.-W. Cai, M. Palucki, J. Wu, R. D. Larsen, K. Rossen,
- P. J. Pye, L. DiMichele, P. Dormer, P. J. Reider, J. Org. Chem. 2000, 65, 8415-8420.

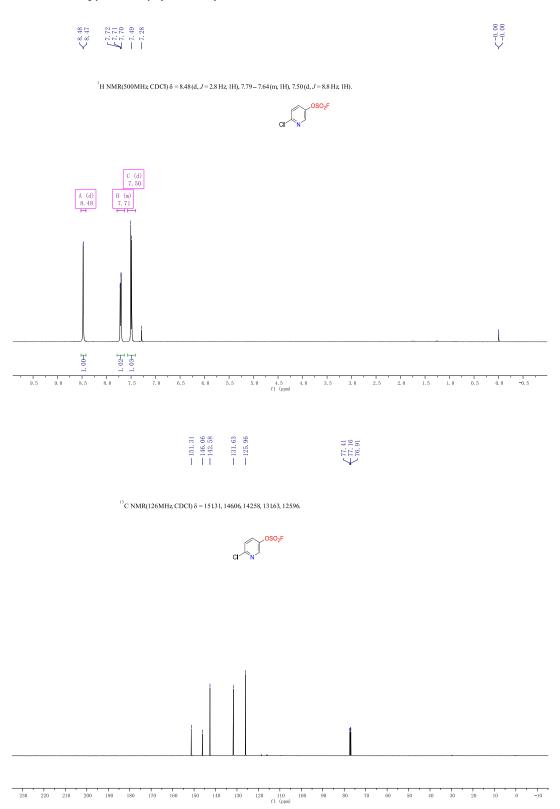

14. Copies of ¹H, ¹³C NMR and ¹⁹F NMR Spectra for the compounds $1 \sim 19$ and Etoricoxib.

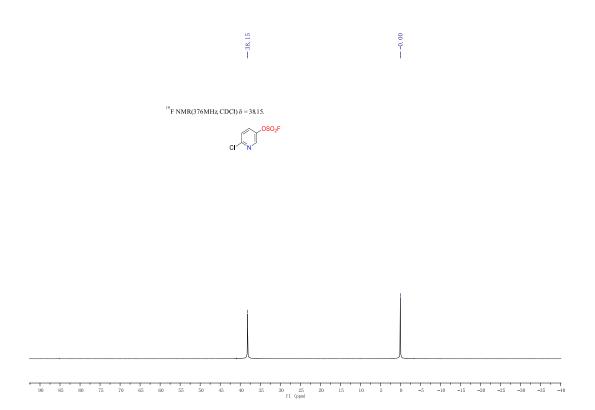
Compound 1-1. Pyridin-3-yl fluorosulfate

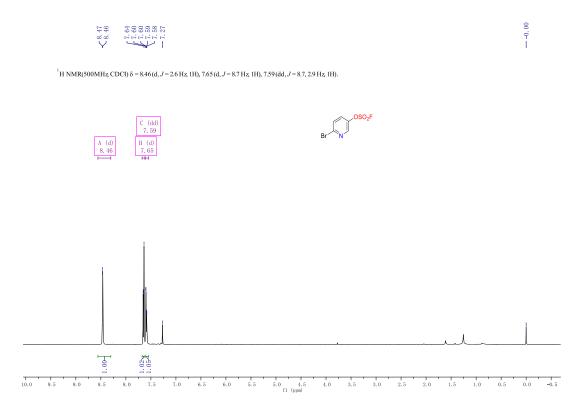




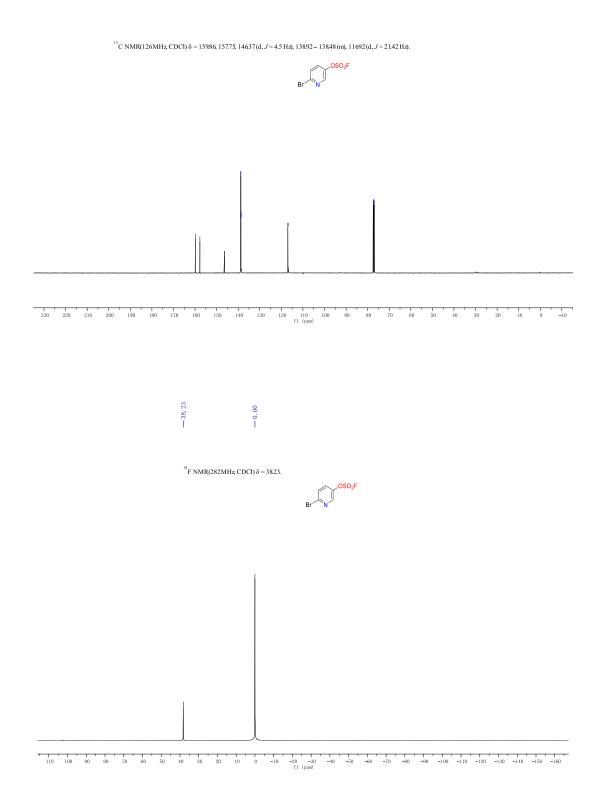
Compound 1-2. 6-Fluoropyridin-3-yl fluorosulfate

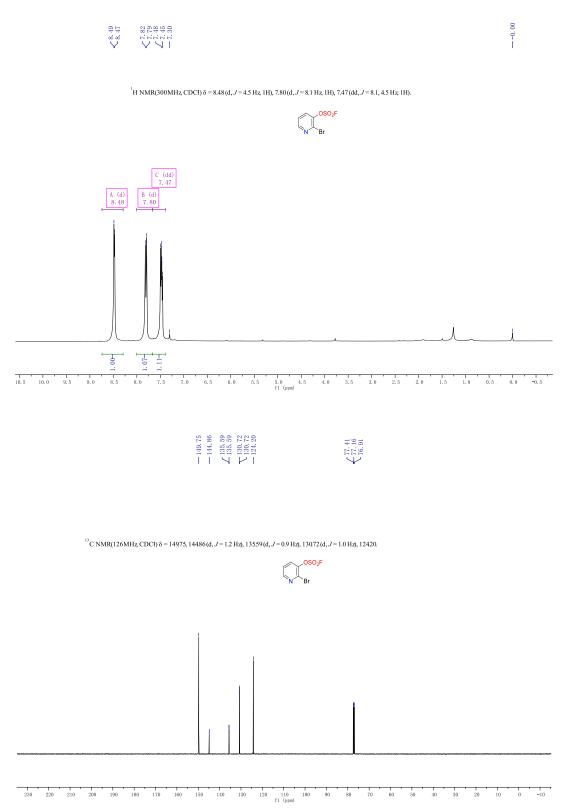


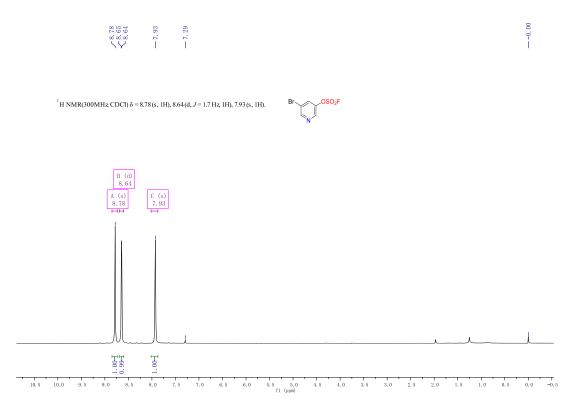



100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 f1 (pps)

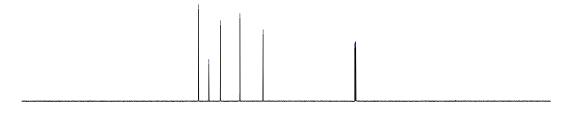
Compound 1-3. 6-Chloropyridin-3-yl fluorosulfate



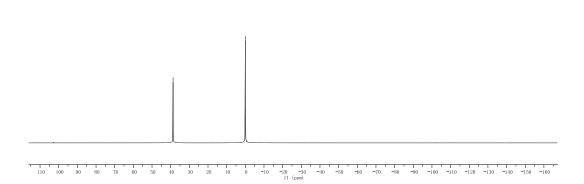

Compound 1-4. 6-Bromopyridin-3-yl fluorosulfate

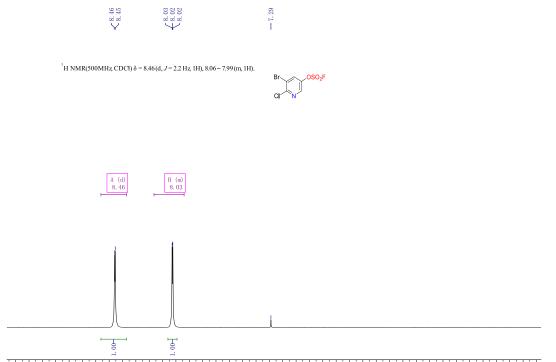


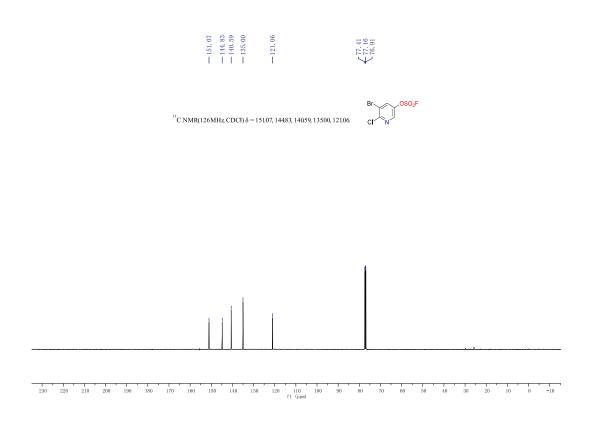
Compound 1-5. 2-Bromopyridin-3-yl fluorosulfate

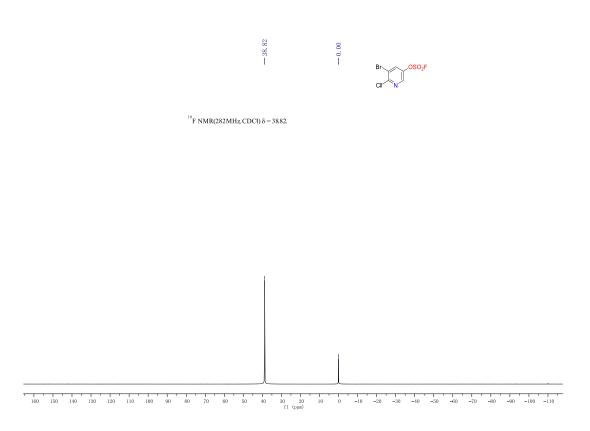

Compound 1-6. 5-Bromopyridin-3-yl fluorosulfate

 13 C NMR(126MHz, CDCI) δ = 151.26, 14638, 14086, 131.68, 12071.

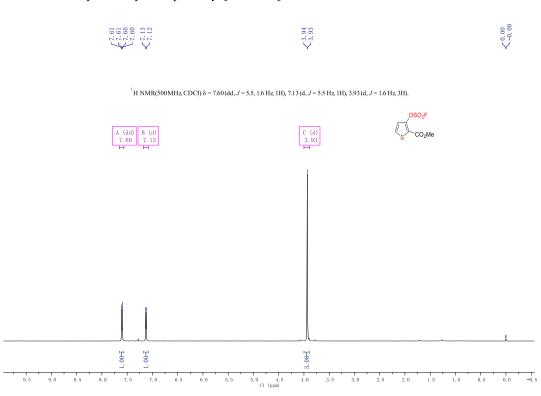




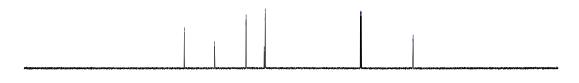


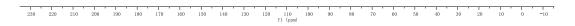


Compound 1-7. 5-Bromo-6-chloropyridin-3-yl fluorosulfate

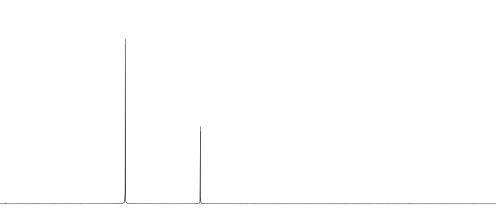


^{9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3} fl (ppa)

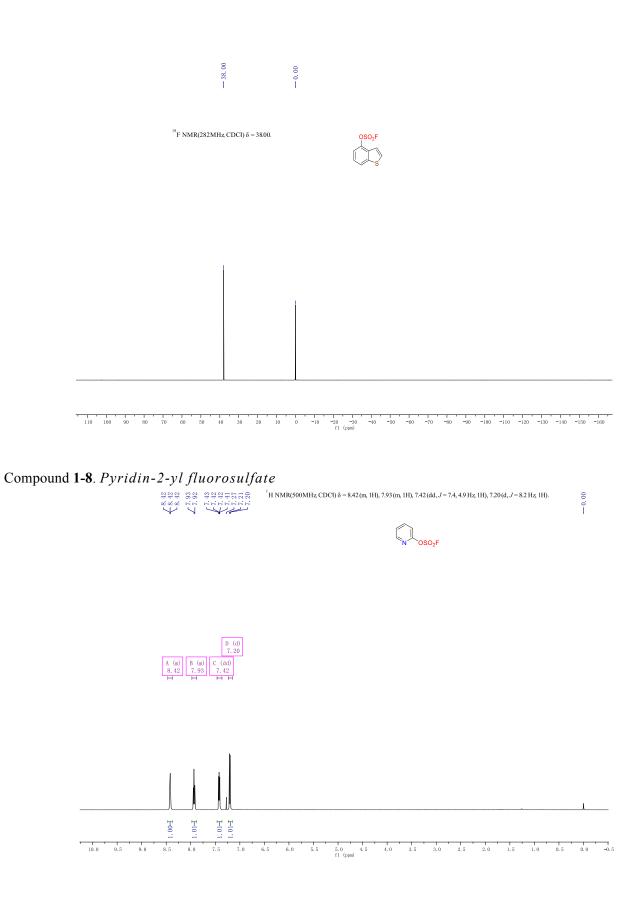

Compound 1-18. 2-Methoxycarbonyl-thiopen-3-yl fluorosulfate



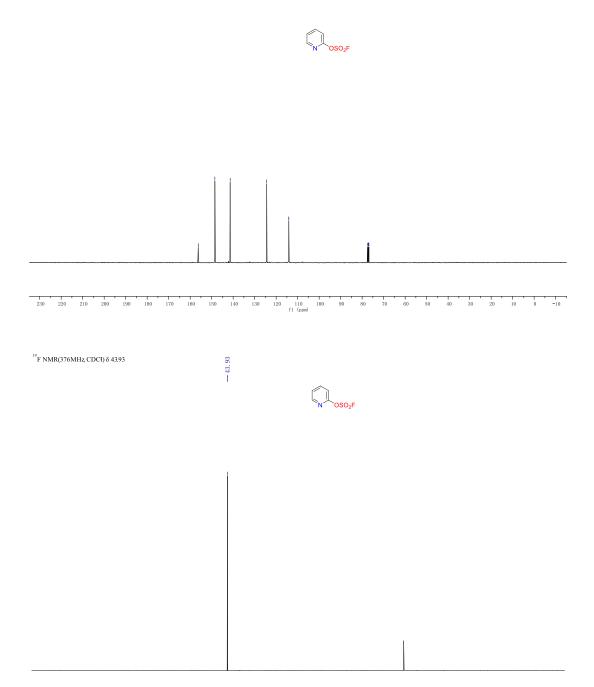
¹³C NMR(126MHz, CDC¹) δ = 15980, 14561, 13090 (d, J = 7.4 Hz), 12241, 12193 (d, J = 5.5 Hz), 52.73 (d, J = 9.5 Hz).

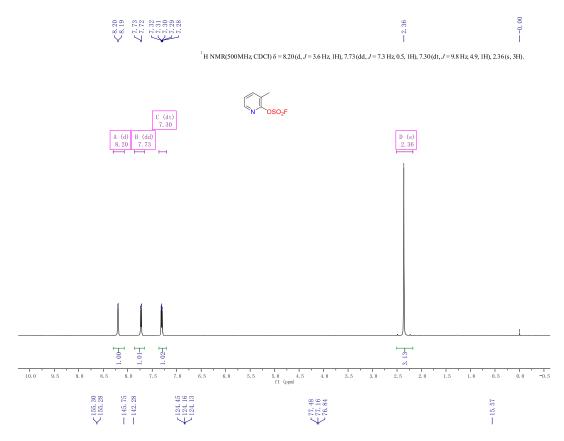


¹⁹F NMR(282MHz, CDCI) δ = 39.63.

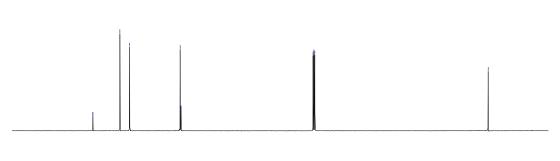


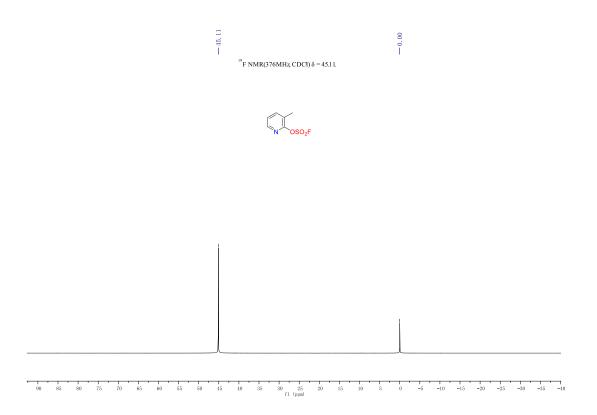
110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -11 (pps)

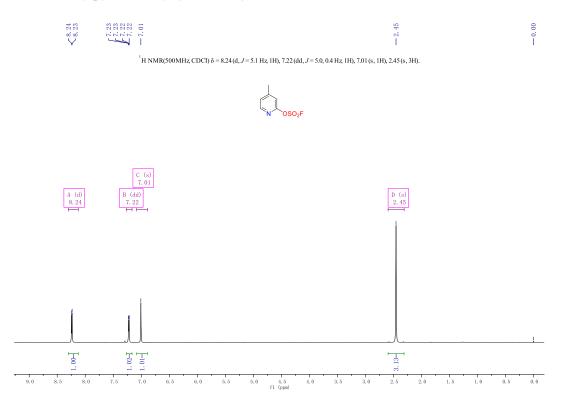

Compound 1-19. Benzo[b] thiophen-4-yl fluorosulfate

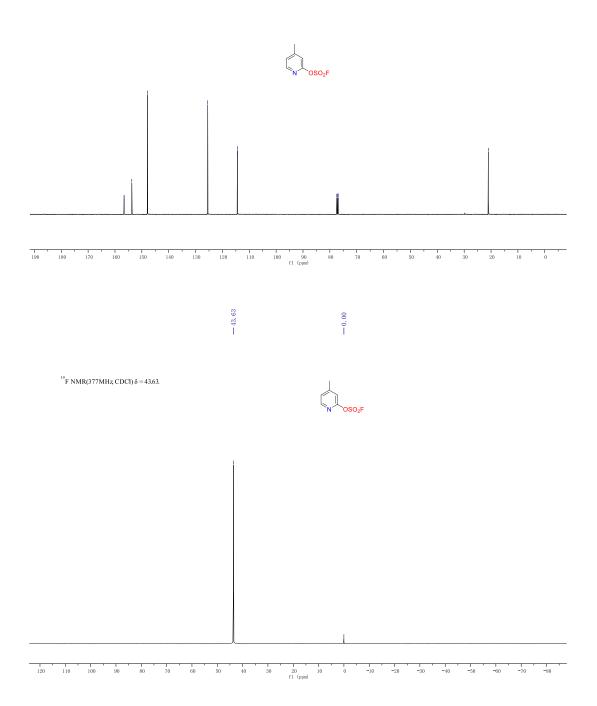


 13 C NMR(101MHz, CDCI) δ = 15624 (d, J = 1.3 Hz), 14850, 14139, 12439, 11410 (d, J = 2.5 Hz).

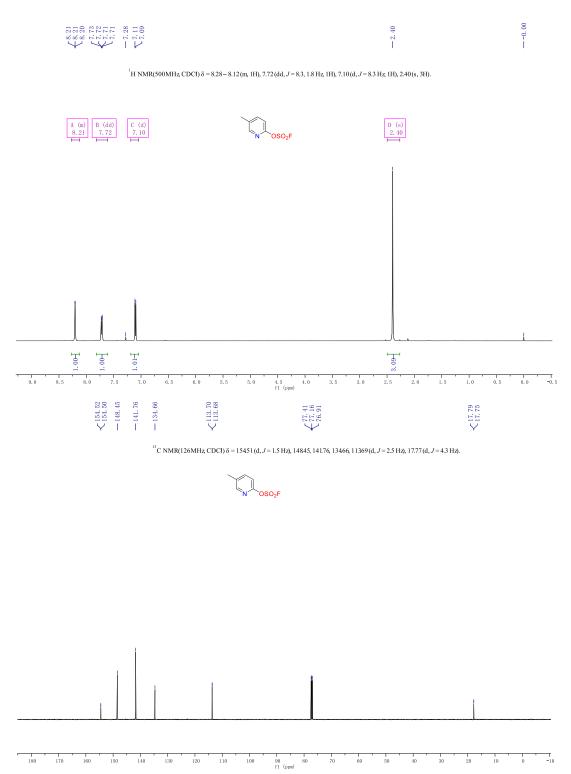

90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40

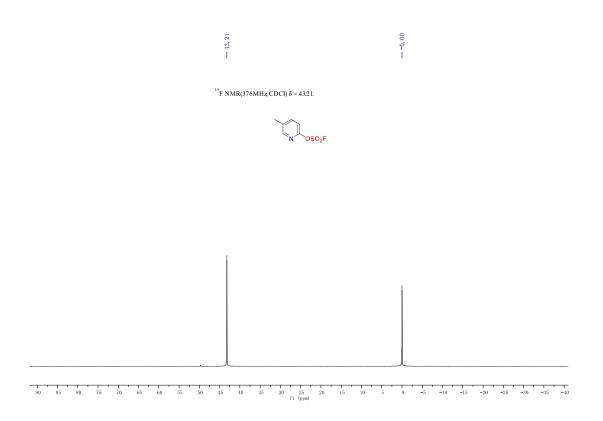

Compound 1-9. 3-Methylpyridin-2-yl fluorosulfate


 13 C NMR(101MHz, CDCI) δ = 15529(d, J = 1.5 Hz), 14575, 14228, 12445, 12415(d, J = 2.3 Hz), 1557.

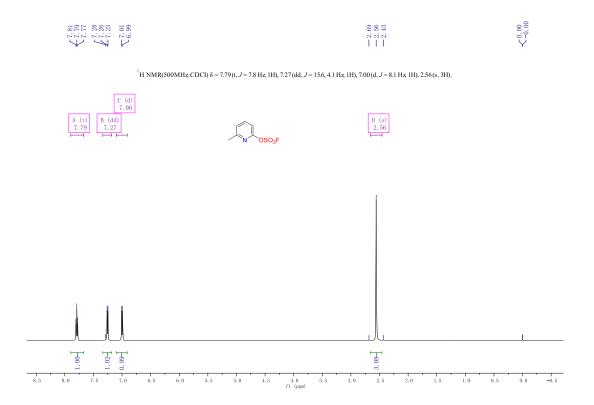


Compound 1-10. 4-Methylpyridin-2-yl fluorosulfate

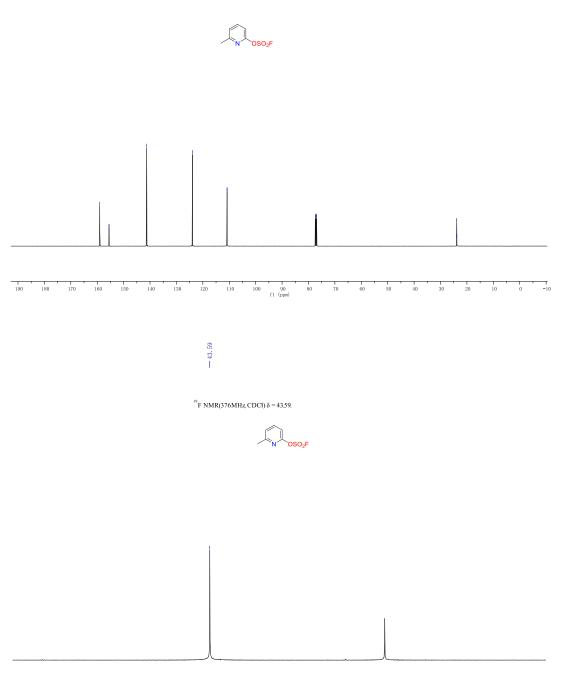




¹³C NMR(126MHz, CDCI) δ = 15661 (d, *J* = 1.3 Hz), 15373, 14794, 12546, 11444 (d, *J*= 2.5 Hz), 21.01.

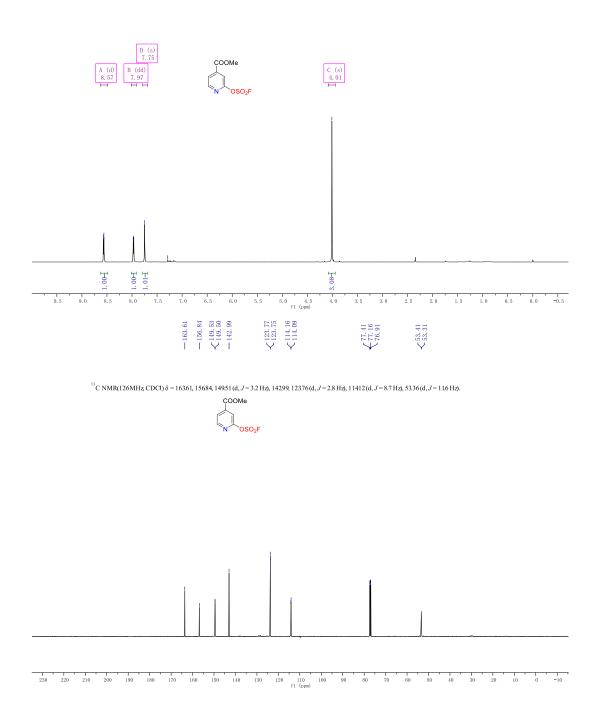


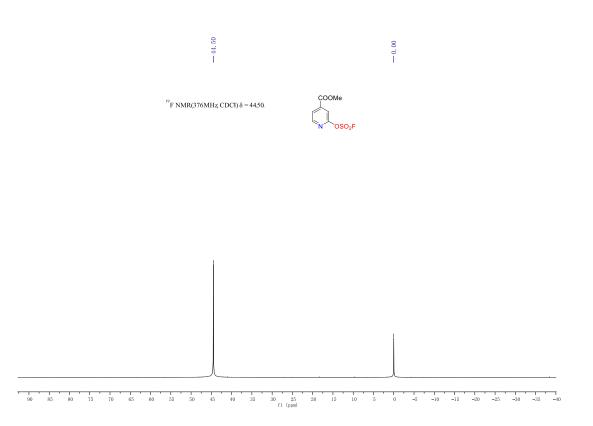
Compound 1-11. 5-Methylpyridin-2-yl fluorosulfate



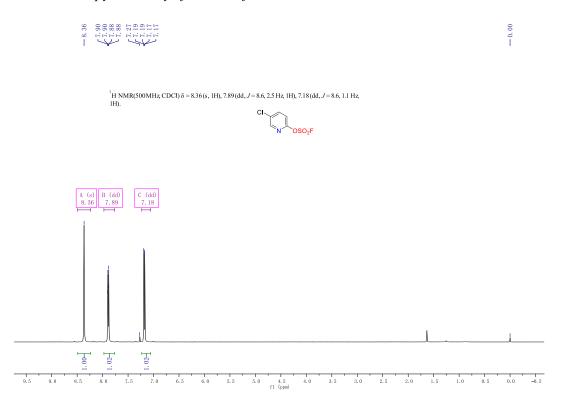
Compound 1-12. 6-Methylpyridin-2-yl fluorosulfate



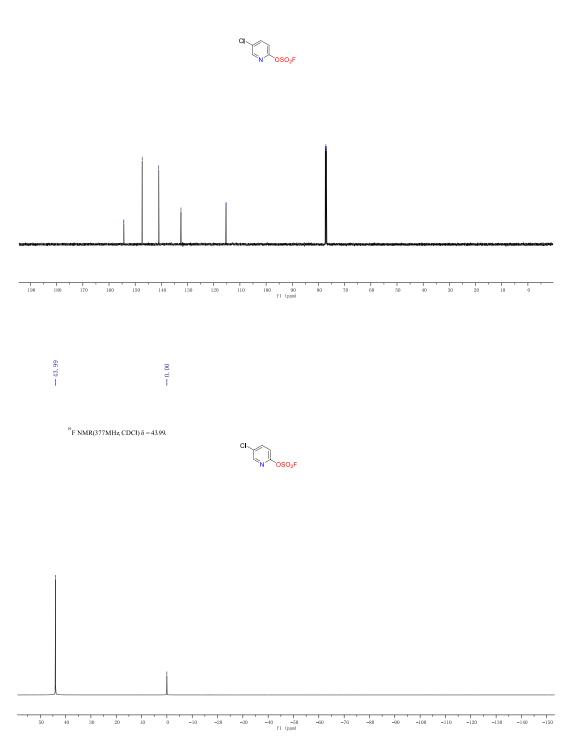

 13 C NMR(126MHz, CDC) $\delta = 15903$, 15554(d, J = 1.2 Hz, 1H), 14125, 12393, 11082(d, J = 2.4 Hz), 23.85(q, J = 3.2 Hz).



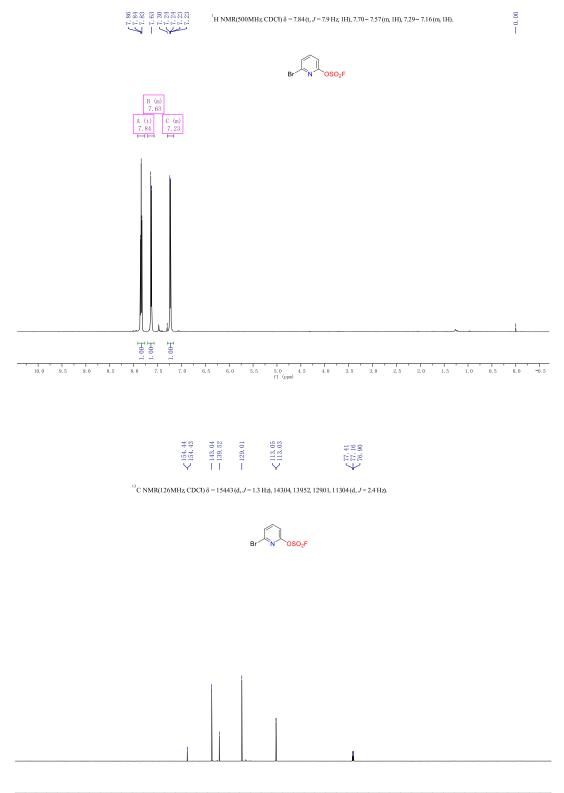
Compound 1-13. 4-Methoxycarbonyl-pyridin-2-yl fluorosulfate

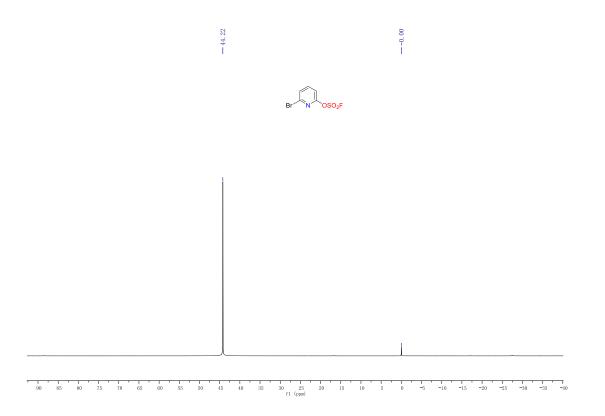


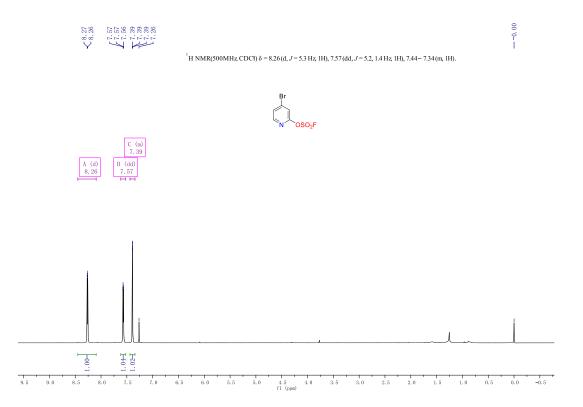
 $^{1}\mathrm{H}\;\mathrm{NMR}(500\,\mathrm{MHz};\mathrm{CDCI})\;\delta=8.57\,(\mathrm{d},J=5.0\,\mathrm{Hz};\mathrm{1H}),\,7.97\,(\mathrm{dd},J=5.0,\,1.0\,\mathrm{Hz};\mathrm{1H}),\,7.75\,(\mathrm{s},\,\mathrm{1H}),\,4.01\,(\mathrm{s},\,\mathrm{3H}).$



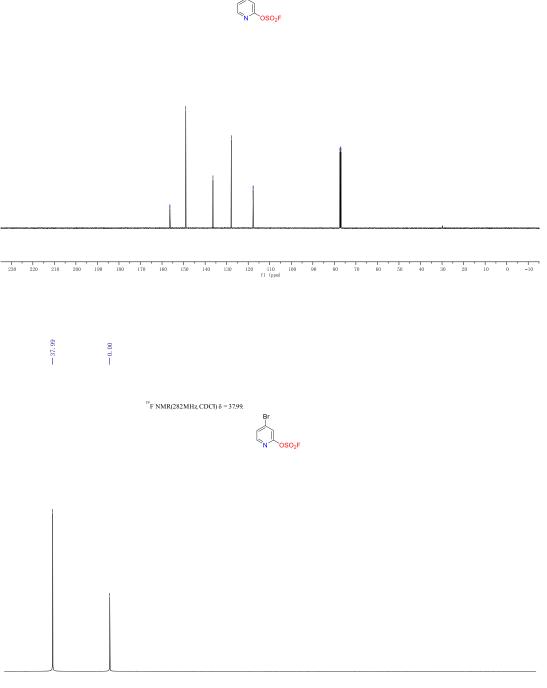
Compound 1-14. 5-Chloropyridin-2-yl fluorosulfate



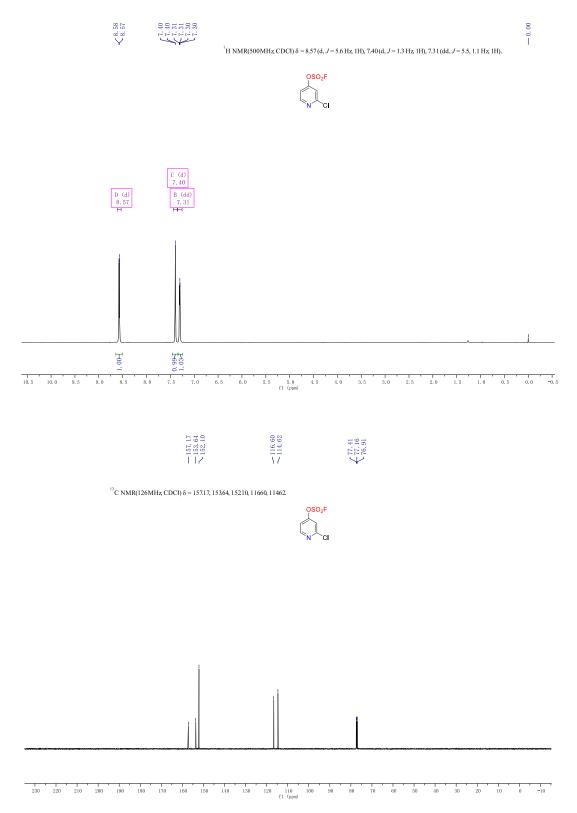

 13 C NMR(126MHz, CDCI) $\delta = 15434 (d, J = 1.4 Hz, 1H), 147.33, 140.98, 132.51, 1152.9 (d, J = 2.6 Hz).$

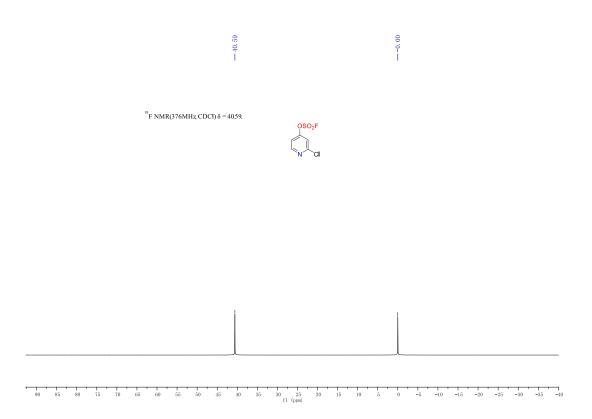

Compound 1-15. 6-Bromopyridin-2-yl fluorosulfate

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} ſî (ppa)

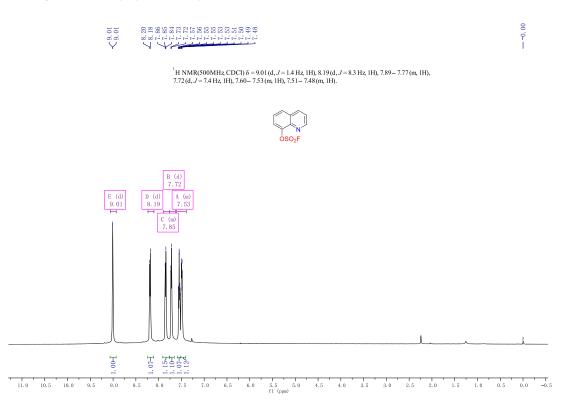


Compound 1-16. 4-Bromopyridin-2-yl fluorosulfate



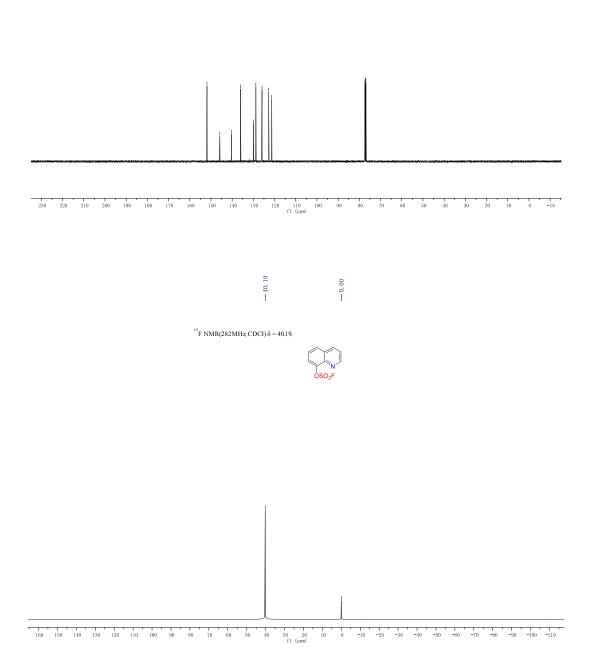


 13 C NMR(126MHz, CDCI) δ = 15637(d, J = 1.4 Hz), 14898, 13636, 127.84, 11771(d, J = 2.5 Hz).

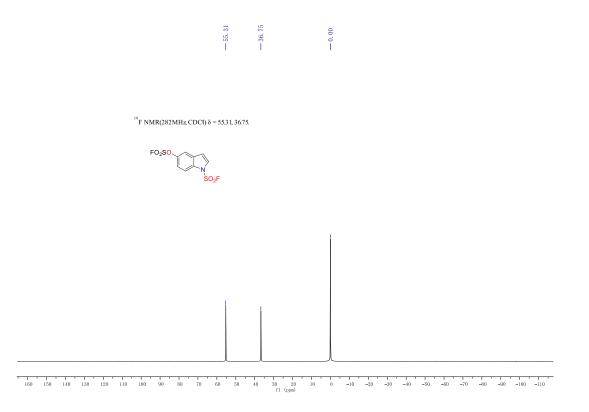


Compound 1-17. 2-Chloropyridin-4-yl fluorosulfate

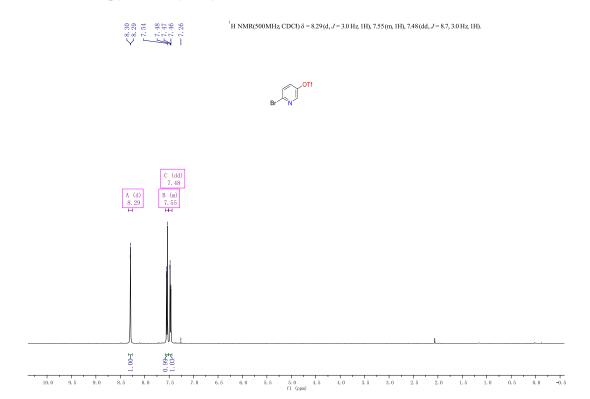
Compound 1-20. Quinolin-8-yl fluorosulfate

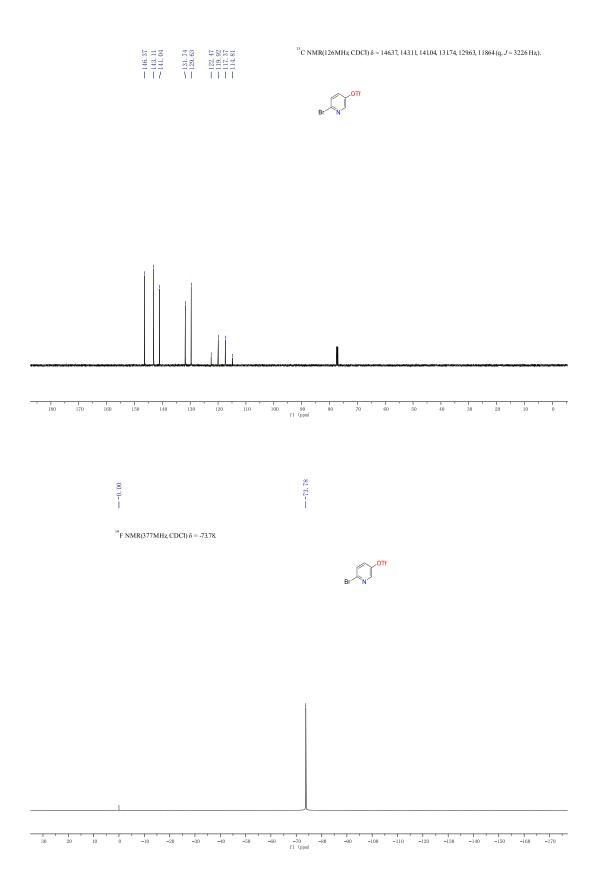


 13 C NMR(126MHz, CDCI) δ = 151.87, 145.82, 140.35, 136.02, 129.98, 128.81, 125.91, 122.76, 121.33.

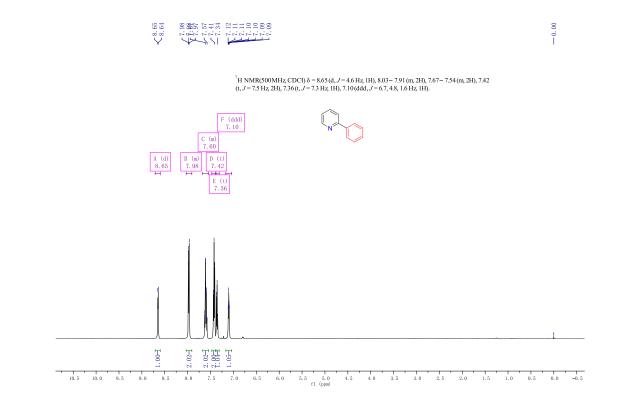


Compound 1-21. 1-(Fluorosulfonyl)-1H-indol-5-yl fluorosulfate

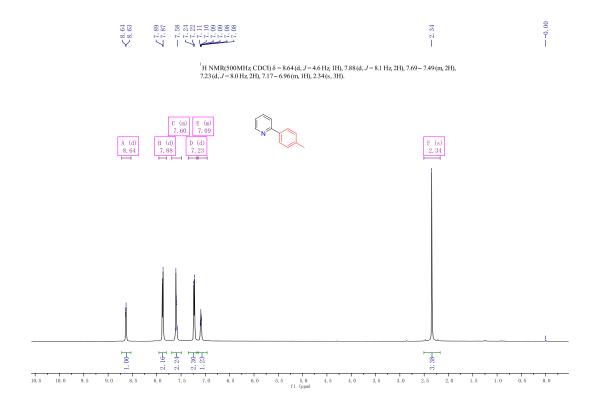

$$-\frac{1}{100} - \frac{1}{100} - \frac{1$$

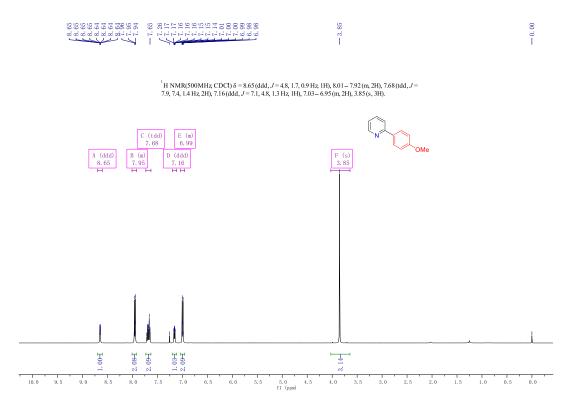

FO₂SO SO₂F B (s) 7.65 E (d) 6.87 D (dd) 7.42 C (d) 7.57 1.01H 1.001 1.001 1.001 11.0 10.5 10.0 9.5 9.0 8.5 7.5 8.0 0.5 0.0 -0.5 -1.0 5.5 5.0 f1 (ppm) 3.5 3.0 2.5 6.5 6.0 4.5 4.0 2.0 1.5 1.0 ~ 164.13 ~ 162.23 $\begin{array}{c} \swarrow 145.97 \\ 145.85 \\ \checkmark 139.88 \\ - 134.92 \\ \hline 128.27 \\ 127.15 \end{array}$ $< \frac{109.70}{109.40}$ $\frac{77.41}{16}$ $\label{eq:constraint} \stackrel{13}{\sim} C \ NMR(126MH_2, CDCI) \ \delta = 16318 \ (d, J=2394 \ Hz), 14591 \ (d, J=149 \ Hz), 13984 \ (d, J=7.9 \ Hz), 13677, 13494 \ (d, J=4.6 \ Hz), 12820 \ (d, J=2646 \ Hz), 10955 \ (d, J=37.8 \ Hz).$ 164.13
162.23 $\angle 145.97$ $\angle 145.85$ $\angle 139.88$ $\angle 139.81$ -134.92 ~ 129.25 ~ 128.27 ~ 127.15 109.70 109.40 FO₂SO SO₂F 140 130 f1 (ppm) 160 150 120 110 120 110 f1 (ppn) 230 220 210 160 150 140 130 70 60 0 -10 200 190 180 170 80 50 40 30 20 10 100 90

 $^{1}\text{H NMR}(500\,\text{MHz, CDCI}) \ \delta = 7.99\,(\text{d}, J = 9.1\,\text{Hz}, 1\text{H}), \ 7.65\,(\text{s}, 1\text{H}), \ 7.57\,(\text{d}, J = 3.8\,\text{Hz}, 1\text{H}), \ 7.42\,(\text{dd}, J = 9.0, 1.5\,\text{Hz}, 1\text{H}), \ 6.87\,(\text{d}, J = 3.7\,\text{Hz}, 1\text{H}).$

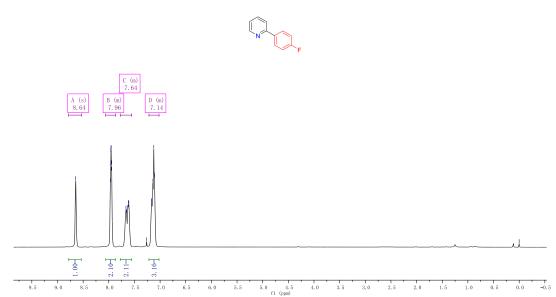


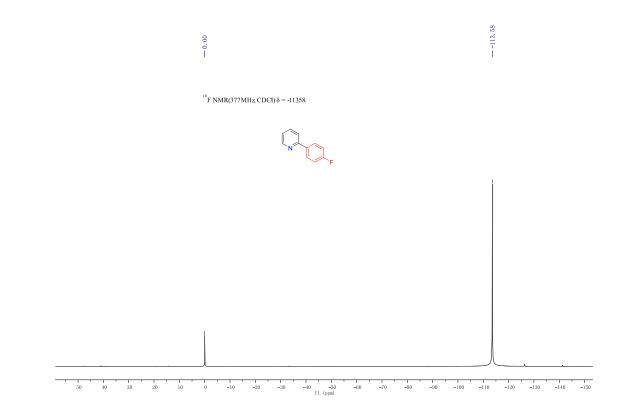
Compound 8. 6-Bromopyridin-3-yl triflate



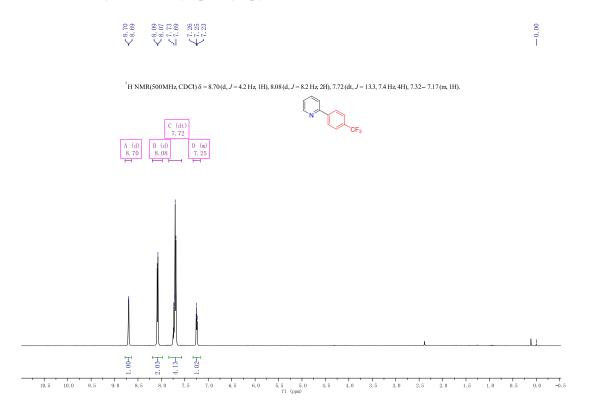

Compound 3-1. 2-Phenylpyridine

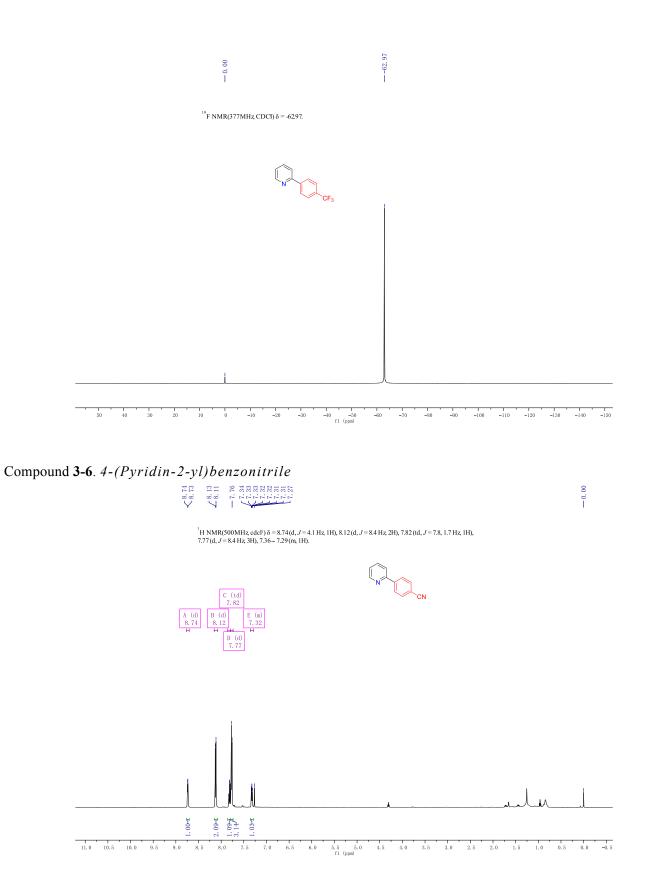

Compound **3-2**. 2-p-Tolylpyridine

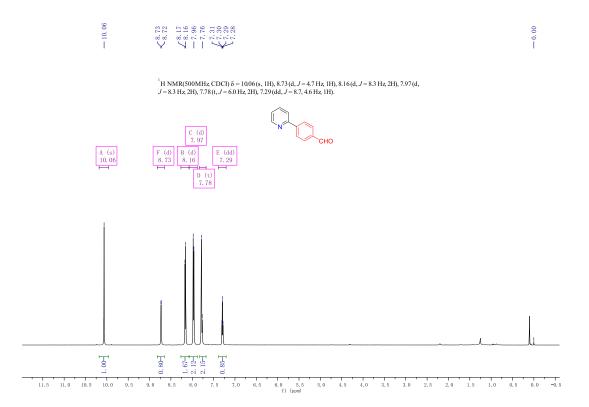

Compound **3-3**. 2-(4-Methoxyphenyl)pyridine



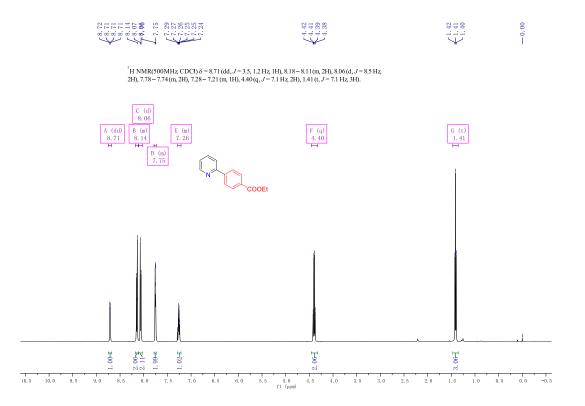
Compound **3-4**. *2-(4-Fluorophenyl)pyridine*

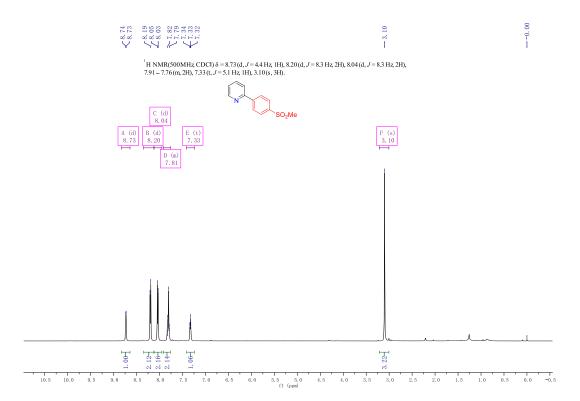


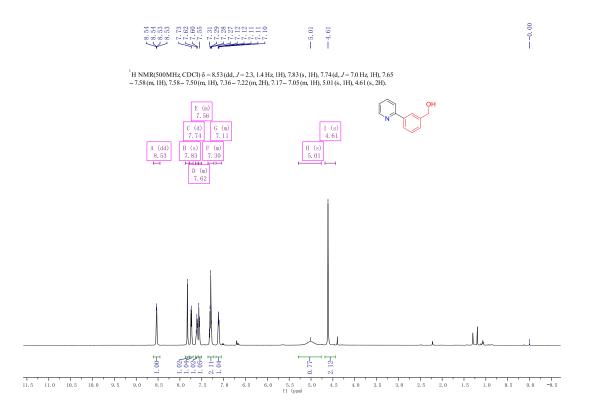

⁻¹H NMR(500MHz, CDCI) δ = 8.64 (s, 1H), 8.06 – 7.87 (m, 2H), 7.78 – 7.55 (m, 2H), 7.22 – 7.02 (m, 3H).

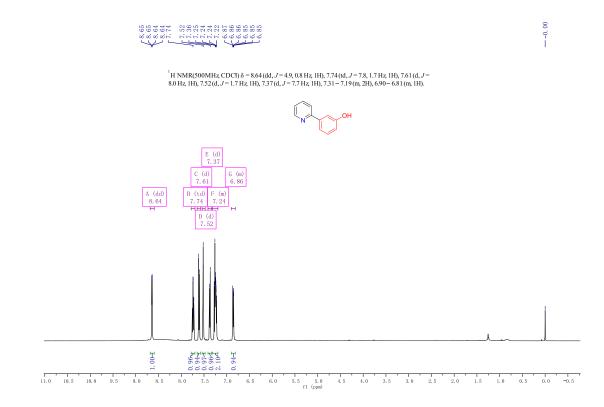


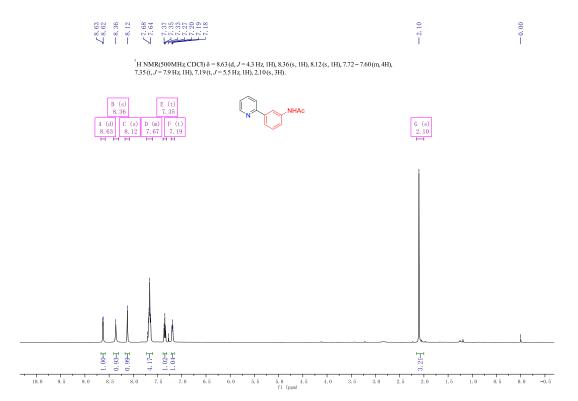
Compound 3-5. 2-(4-(Trifluoromethyl)phenyl)pyridine

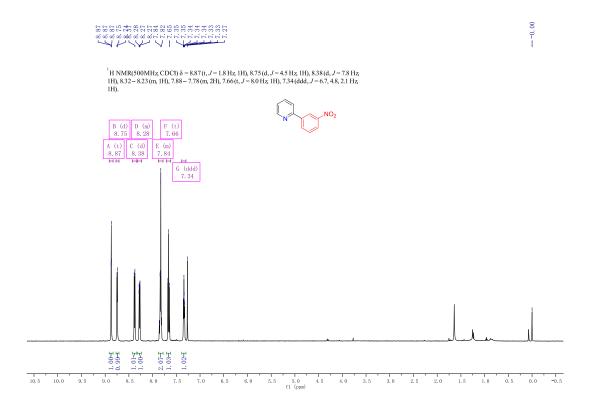


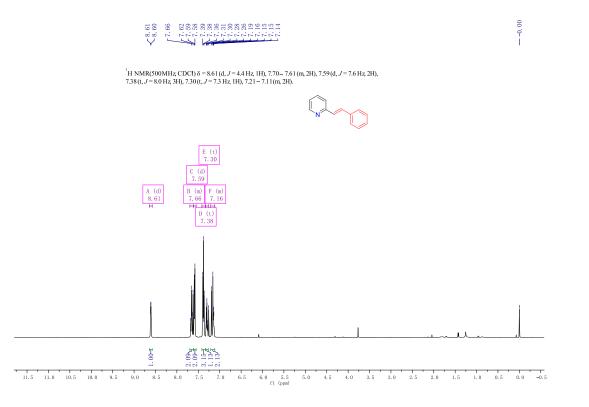

Compound **3-7**. *4-(Pyridin-2-yl)benzaldehyde*

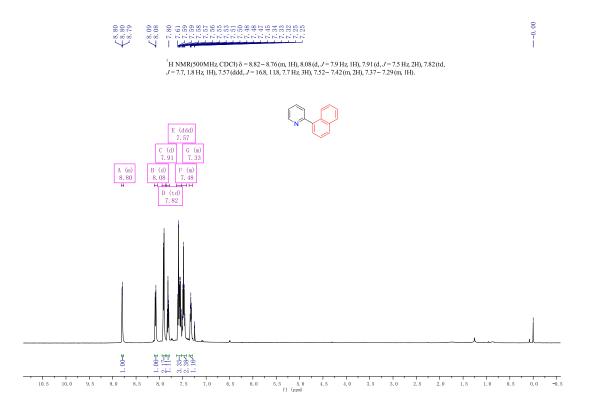

Compound 3-8. Ethyl 4-(pyridin-2-yl)benzoate

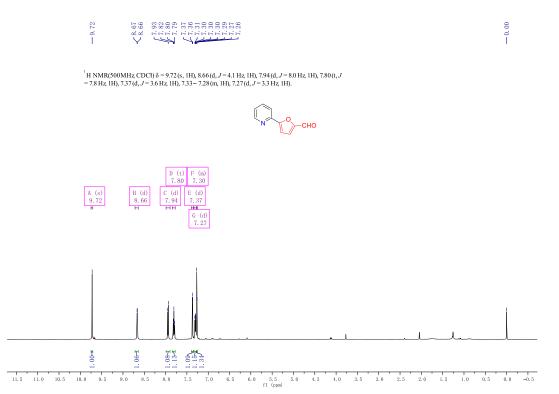

Compound 3-9. 2-(4-(methylsulfonyl)phenyl)pyridine

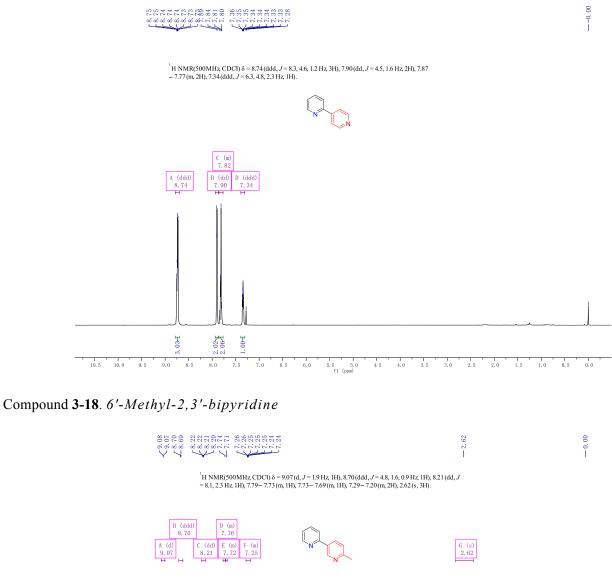

Compound 3-10. (3-(Pyridin-2-yl)phenyl)methanol

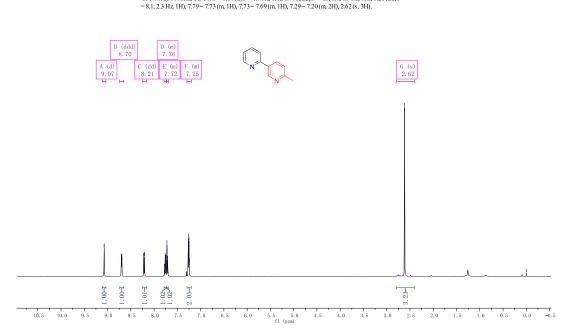

Compound 3-11. 3-(pyridin-2-yl)phenol (5-11)


Compound **3-12**. *N-(3-(pyridin-2-yl)phenyl)acetamide*

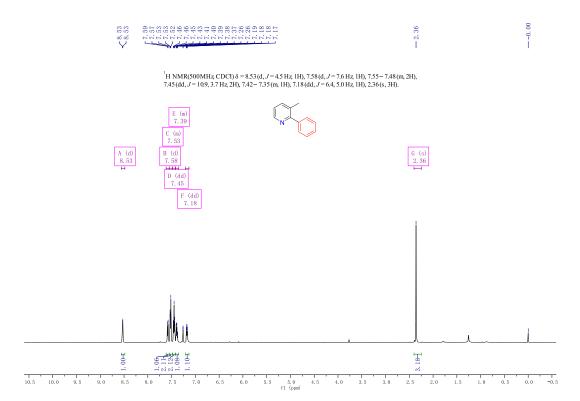

Compound **3-13**. 2-(3-nitrophenyl)pyridine


Compound **3-14**. (E)-2-styrylpyridine

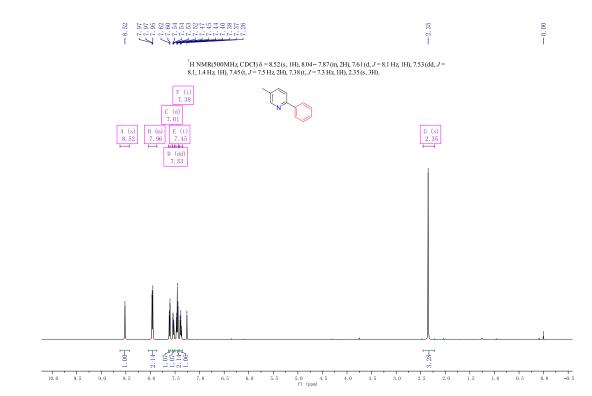

Compound 3-15. 2-(Naphthalen-1-yl)pyridine

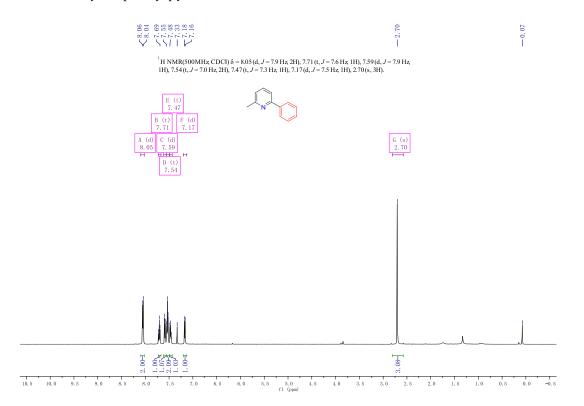


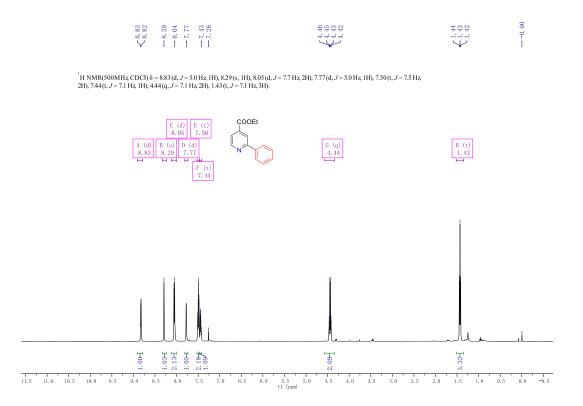
Compound **3-16**. *5-(Pyridin-2-yl)furan-2-carbaldehyde*



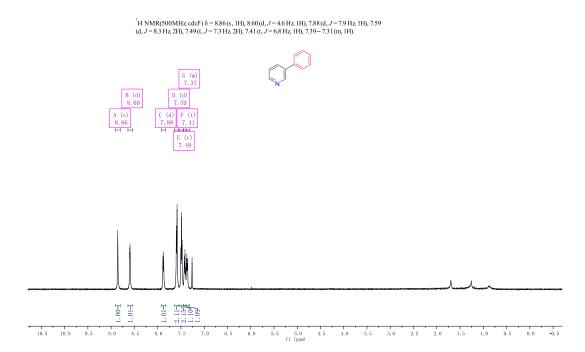
Compound **3-17**. 2, 4'-Bipyridine


Compound 4-1. 3-Methyl-2-phenylpyridine

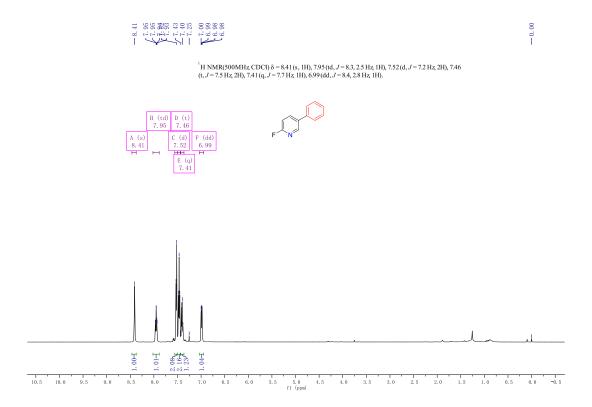

Compound 4-2. 4-Methyl-2-phenylpyridine


Compound 4-3. 5-Methyl-2-phenylpyridine

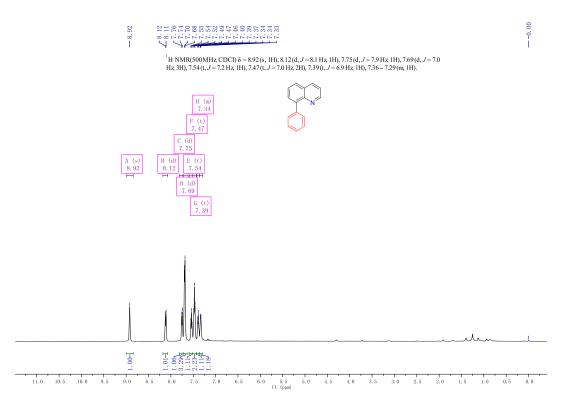
Compound 4-4. 6-Methyl-2-phenylpyridine

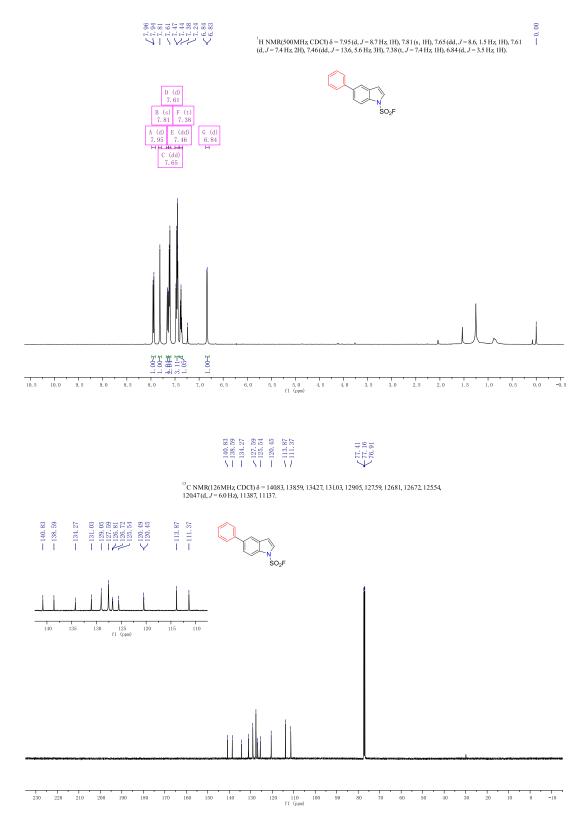


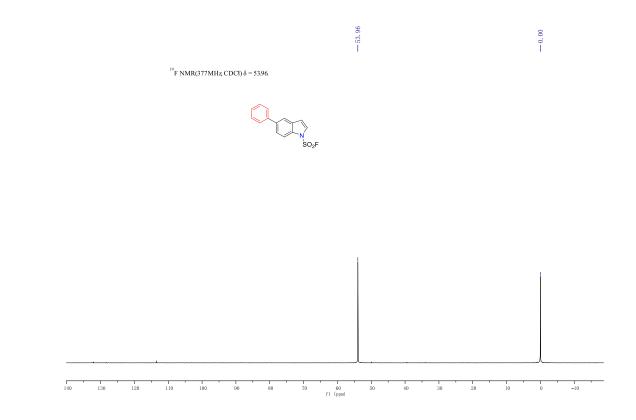
Compound 4-5. Ethyl 2-phenylisonicotinate



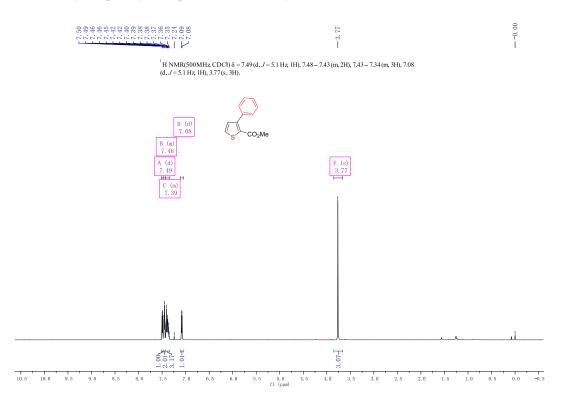
Compound 4-6. 3-Phenylpyridine


86	229	83	26 23 2 2 4 4 5 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 8 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2
×.	x x	66	
	P		IT THE P

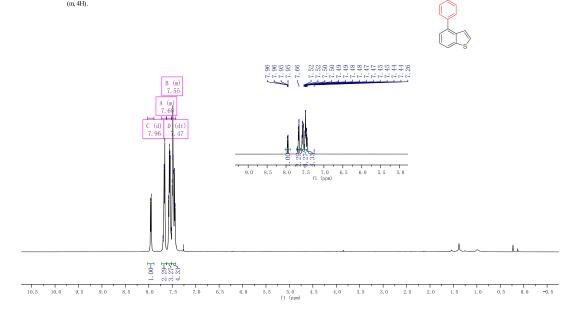

Compound 4-7. 2-Fluoro-5-phenylpyridine



Compound 4-8. 8-Phenylquinoline

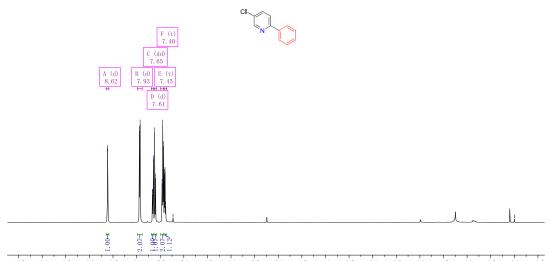


Compound 4-9. 5-Phenyl-1H-indole-1-sulfonyl fluoride

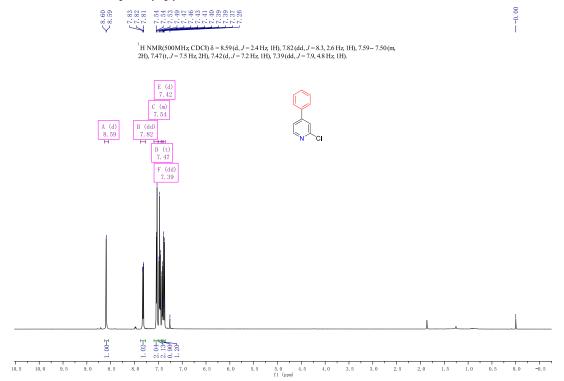

Compound 4-10. Methyl 3-phenylthiophene-2-carboxylate


Compound 4-11. 4-Phenylbenzo[b]thiophene

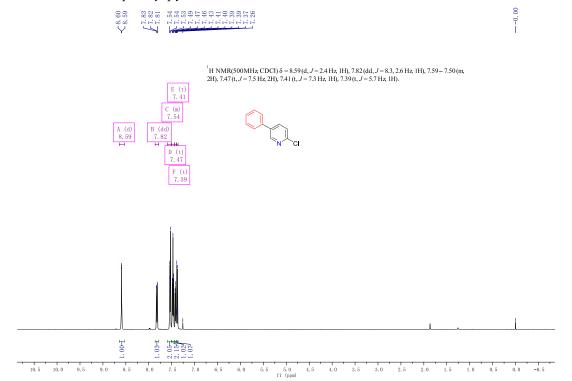
 $\int_{-7.26}^{7.96} \frac{7.96}{25} \\ 7.95 \\ 7.95 \\ 7.49 \\ -7.26$


¹H NMR(500MHz, CDCl) δ = 7.96 (d, *J* = 7.7 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.62 – 7.52 (m, 3H), 7.47 (m, 4H).

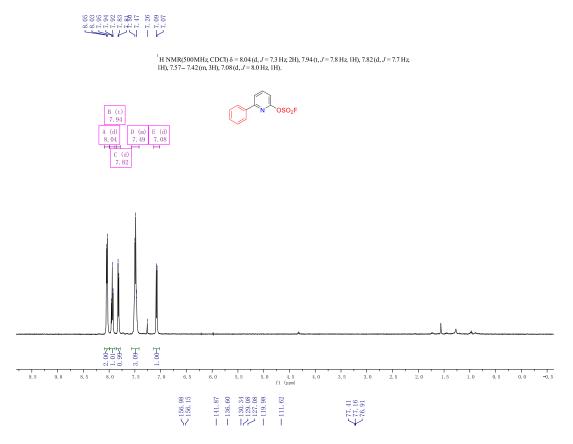
Compound 6-1. 5-Chloro-2-phenylpyridine

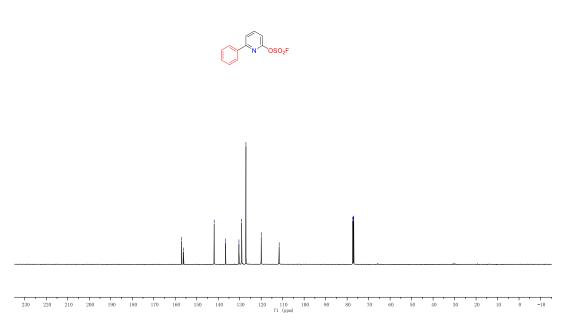


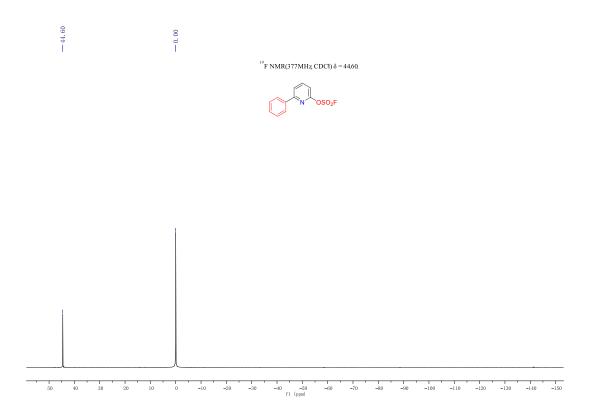
 $^1\rm H$ NMR(500MHz CDCl) δ = 8.62 (d, J = 2.0 Hz 1H), 7.93 (d, J = 7.3 Hz 2H), 7.65 (dd, J = 8.5, 2.4 Hz 1H), 7.61 (d, J = 8.4 Hz 1H), 7.45 (t, J = 7.3 Hz 2H), 7.40 (t, J = 7.2 Hz 1H).



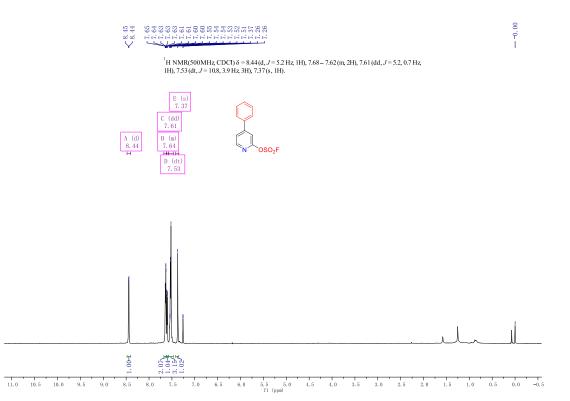
10.5 -0.5 10.0 9.5 9.0 8, 5 8, 0 7.5 7.0 6, 5 6, 0 5.5 4.5 4.0 3, 5 3, 0 2.5 2.0 1.5 1.0 0.5 0.0 5.0 f1 (ppm)


Compound 6-2. 2-Chloro-4-phenylpyridine

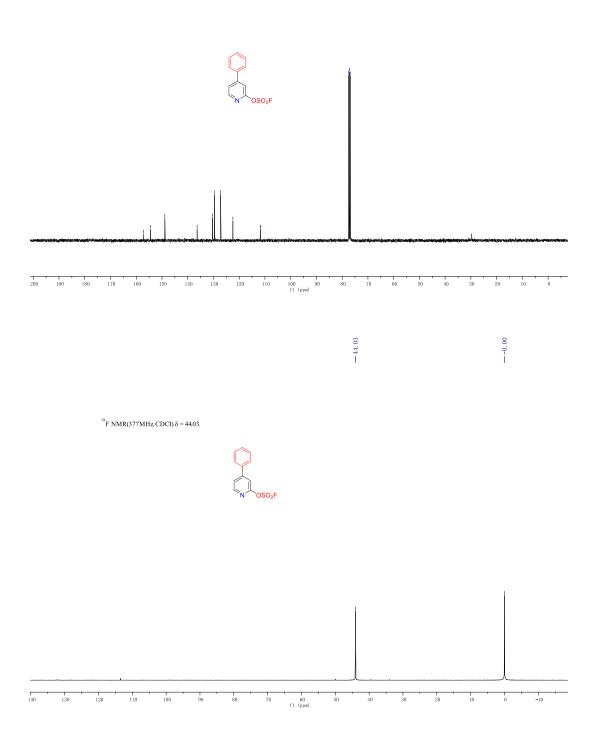

Compound 6-3. 2-Chloro-5-phenylpyridine



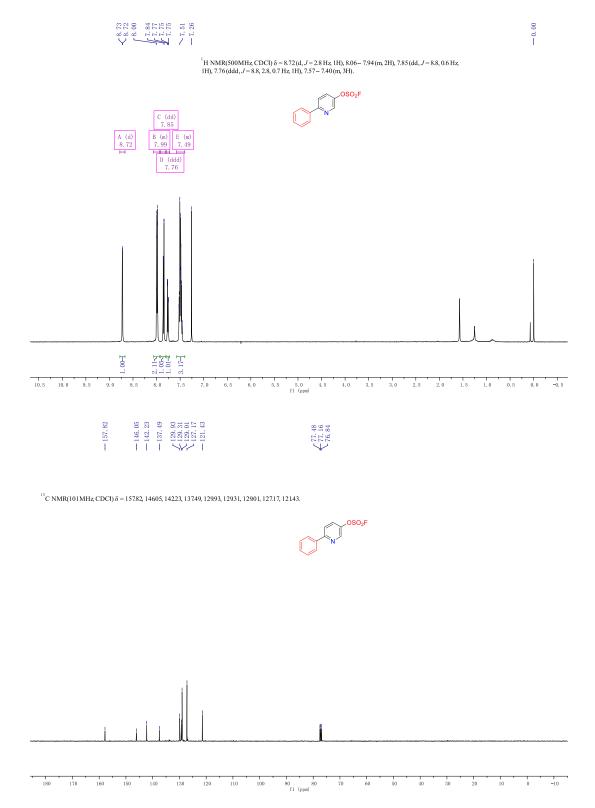
Compound 7-1. 6-Phenylpyridin-2-yl fluorosulfate

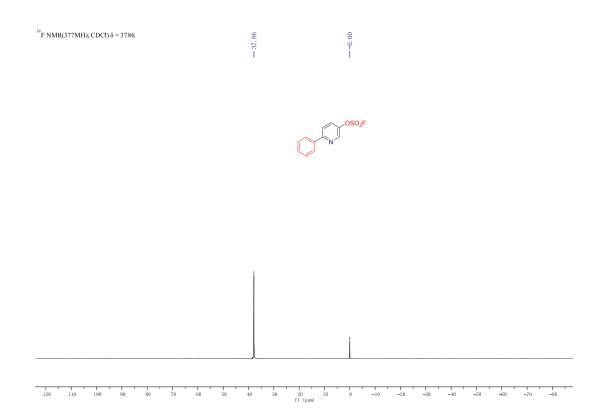


 13 C NMR(126MHz, CDCI) δ = 15698, 15615, 141.87, 13660, 13034, 12908, 12708, 11998, 11162.

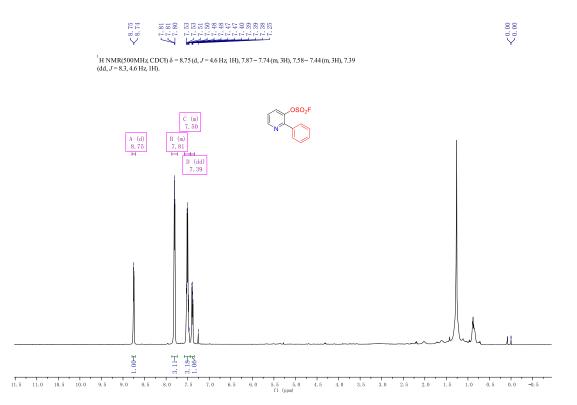


Compound 7-2. 4-Phenylpyridin-2-yl fluorosulfate

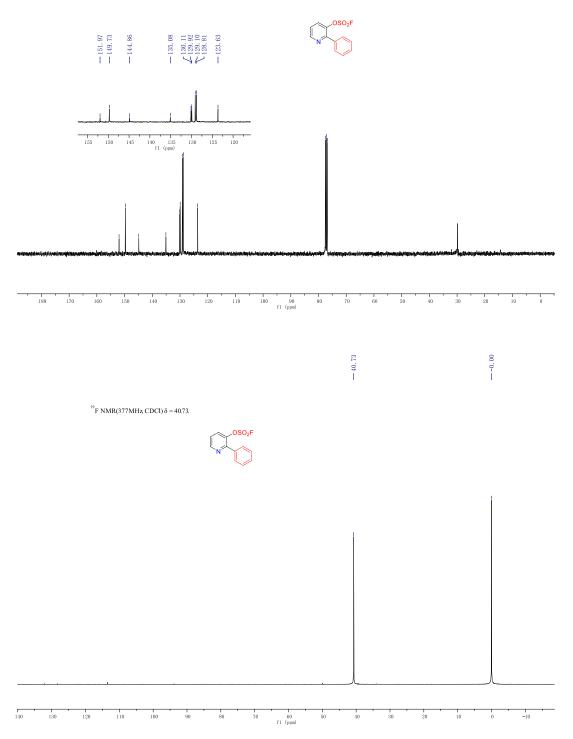




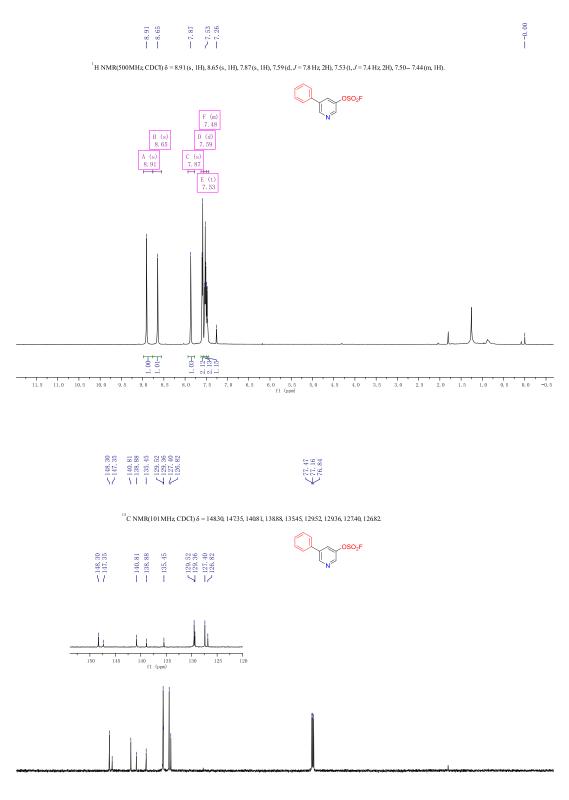
 $^{13}\text{C NMR}(101\,\text{MHz},\text{CDC4})\,\delta=157.27,\,15451,\,14888,\,13635,\,13037,\,12959,\,127.25,\,12244,\,11178\,(\text{d},J=2.6\,\text{Hz},\,3\text{H}).$

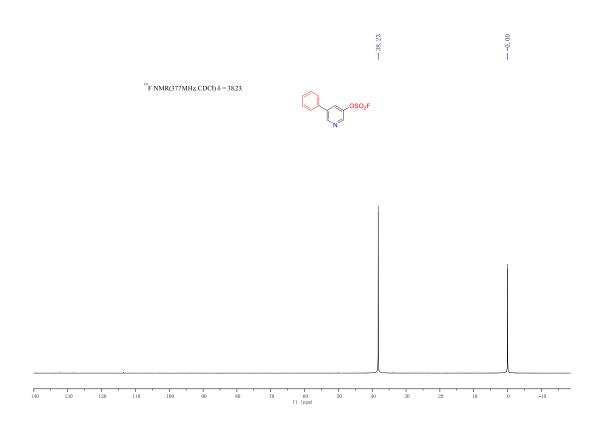


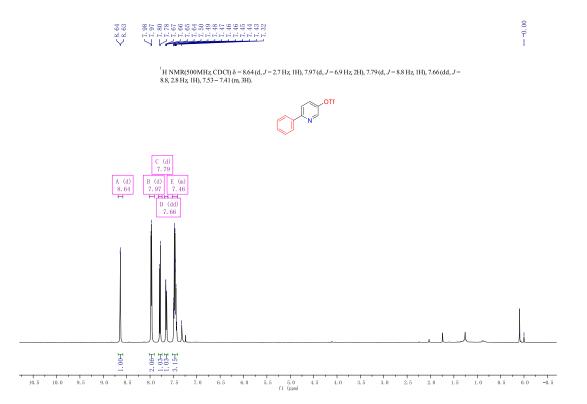
Compound 7-3. 6-Phenylpyridin-3-yl fluorosulfate

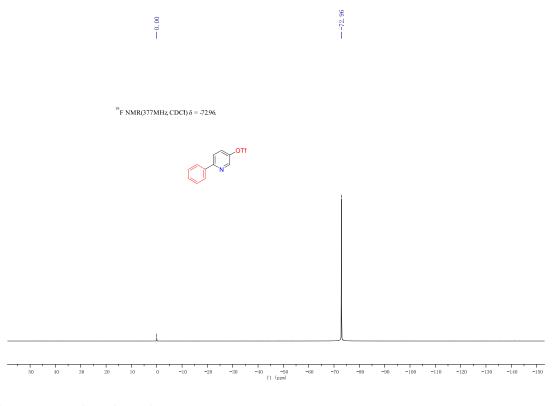


Compound 7-4. 2-Phenylpyridin-3-yl fluorosulfate

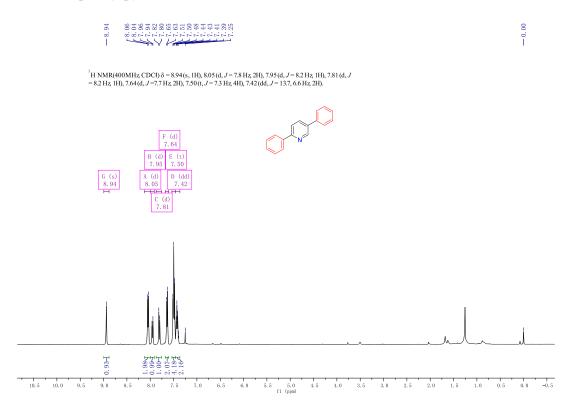



 13 C NMR(101MHz, CDCI) δ = 151.97, 149.73, 14486, 13508, 13011, 129.92, 129.10, 128.81, 123.63.

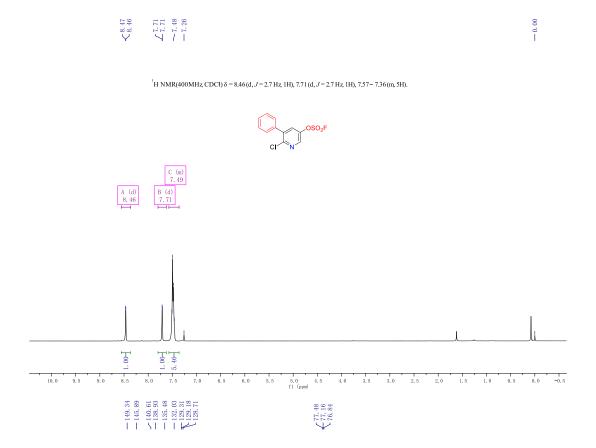

Compound 7-5. 5-Phenylpyridin-3-yl fluorosulfate



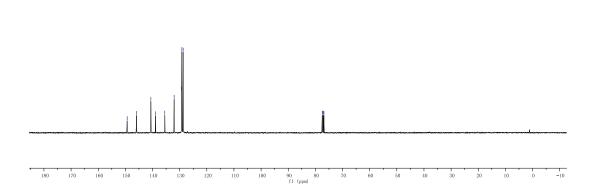
fl (ppm)

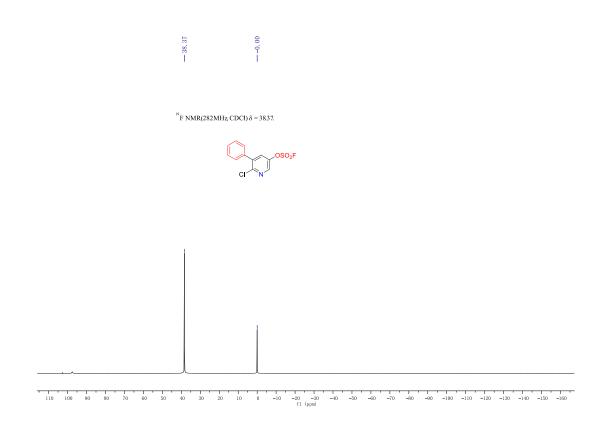


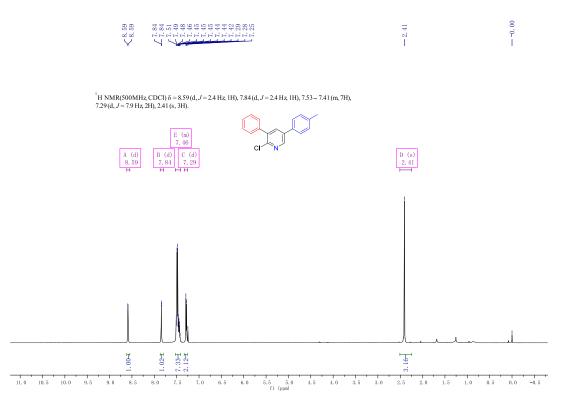
Compound 9. 6-Phenylpyridin-3-yl triflate

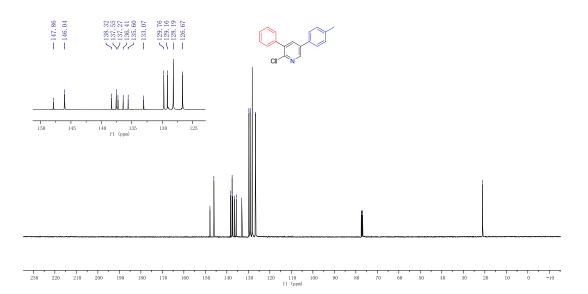


Compound 10. 2, 5-Diphenylpyridine

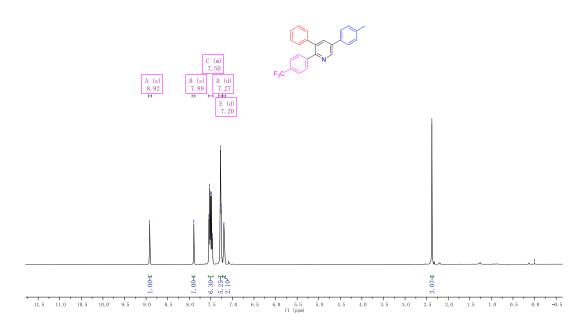


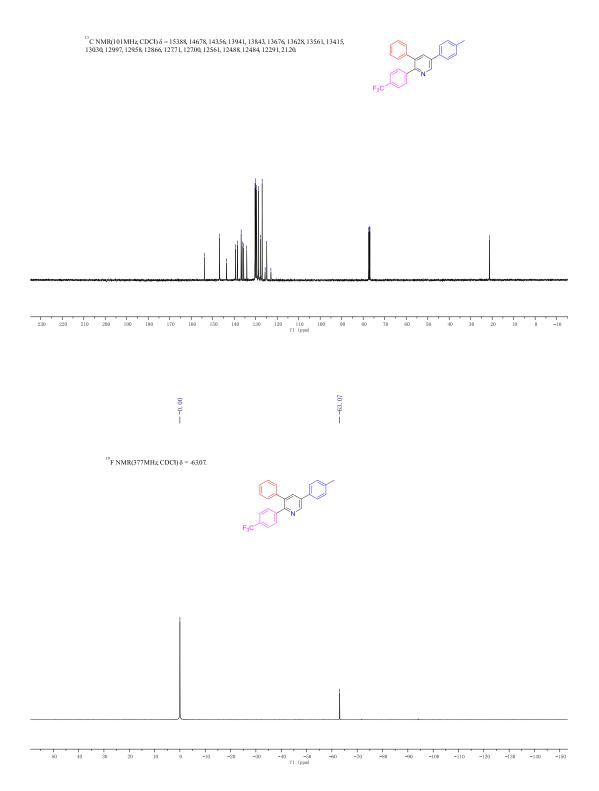

Compound 11. 6-Chloro-5-phenylpyridin-3-yl fluorosulfate

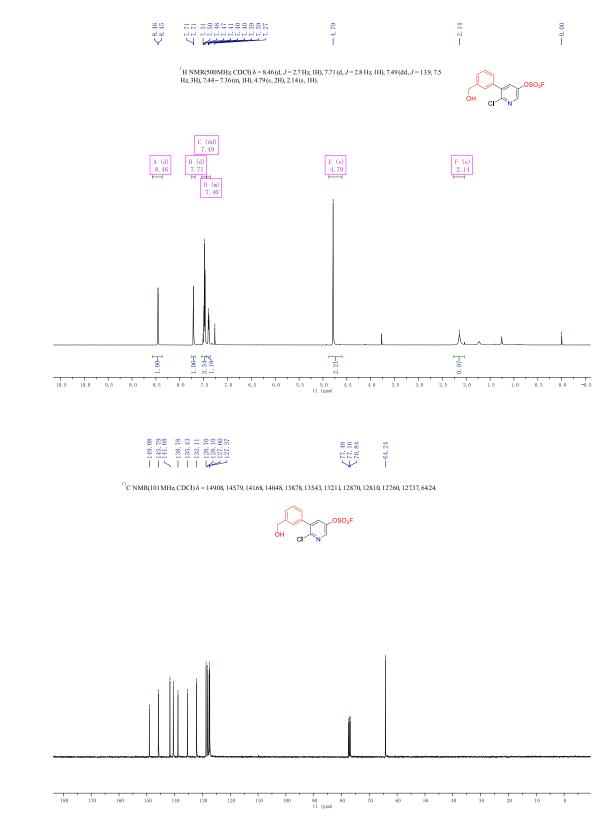

 13 C NMR(101MHz, CDCI) δ = 149.34, 145.89, 140.61, 138.93, 135.48, 132.03, 129.31, 129.18, 128.71.



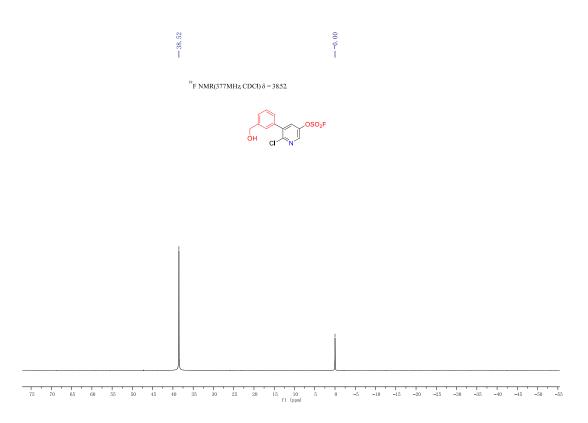
Compound 12. 2-Chloro-3-phenyl-5-p-tolylpyridine

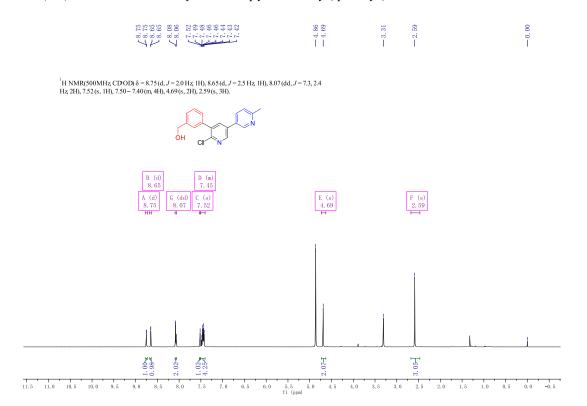


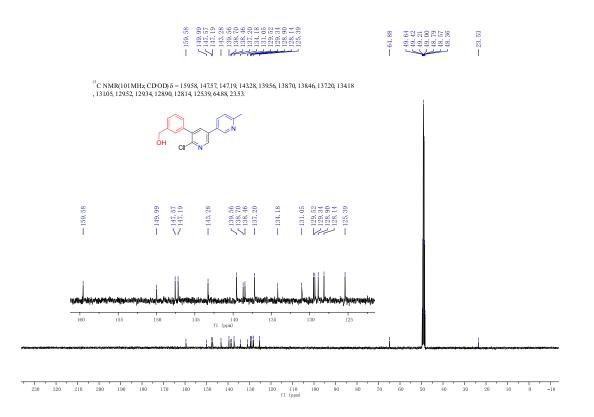

 $Compound \ \textbf{13}. \ \textbf{3-Phenyl-5-p-tolyl-2-(4-(trifluoromethyl)phenyl)pyridine}$



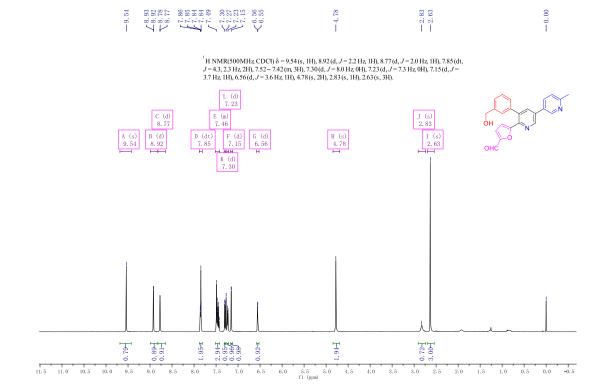
¹ H NMR(400MHz, CDCI) $\delta = 8.92$ (s, 1H), 7.89 (s, 1H), 7.56 – 7.45 (m, 6H), 7.27 (m, 5H), 7.20 (d, J = 2.8 Hz, 2H).

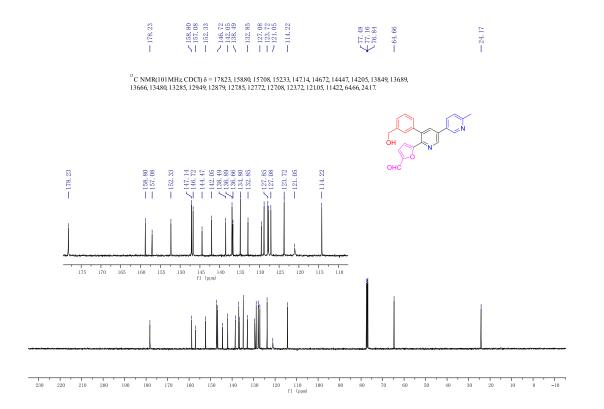


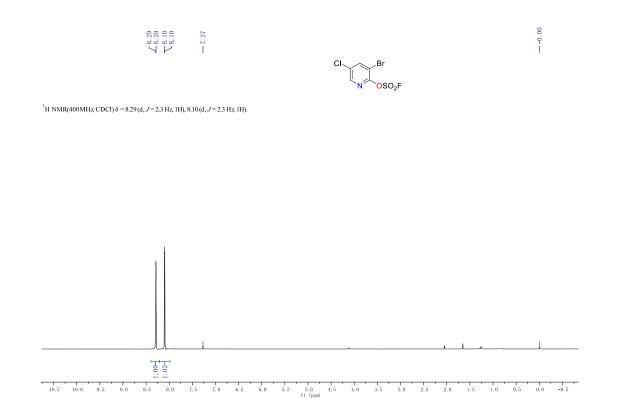




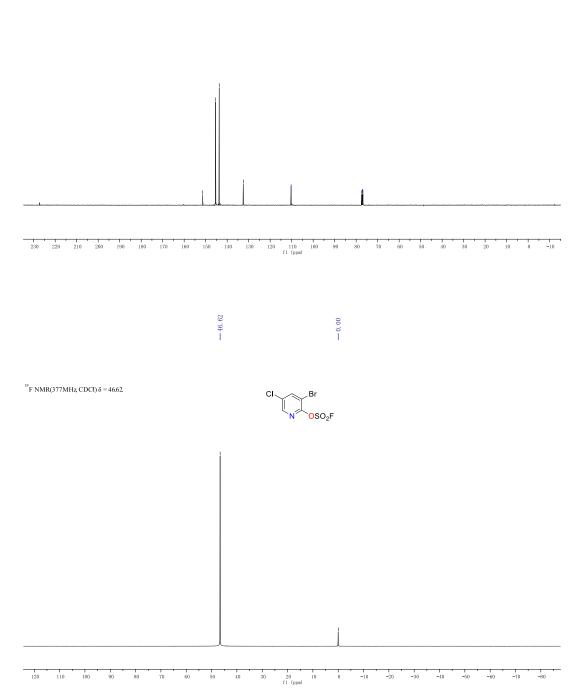
Compound 14. 6-Chloro-5-(3-(hydroxymethyl)phenyl)pyridin-3-yl fluorosulfate

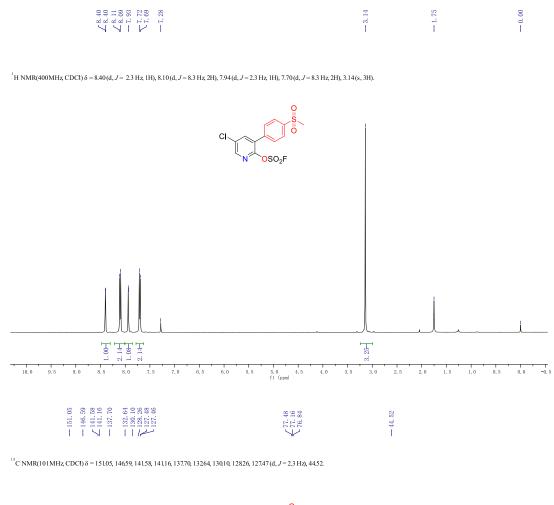


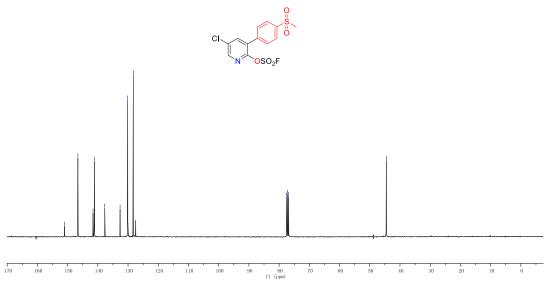

Compound **15**. (3-(6-Chloro-6'-methyl-3,3'-bipyridin-5-yl)phenyl)methanol

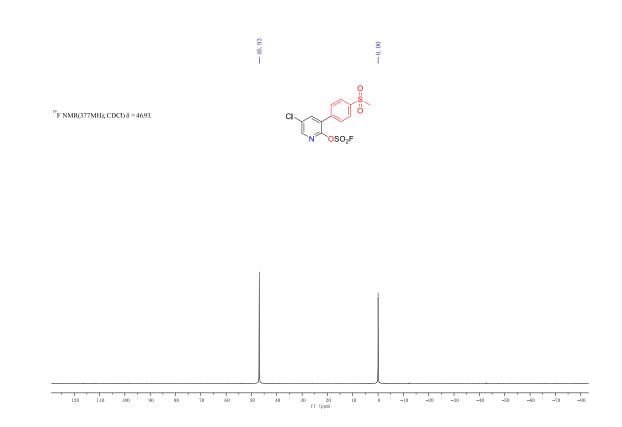


Compound 16. 5-(5-(3-(Hydroxymethyl)phenyl)-6'-methyl-3,3'-bipyridin- 6-yl)furan-2-carbaldehyde


Compound 18. 3-Bromo-5-chloropyridin-2-yl fluorosulfate




¹³C NMR(101MHz, CDCI) δ = 151.36, 14542, 14369, 13252, 11026 (d, *J* = 3.3 Hz).




Compound 19. 5-chloro-3-(4-(methylsulfonyl)phenyl)pyridin-2-yl fluorosulfate

 $\label{eq:constraint} Etoricoxib.\ 5-chloro-6'-methyl-3-(4-(methylsulfonyl)phenyl)-2,3'-bipyridine$

