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1 Proof of perfect adaptation and gradient sensing in limit k−I/kD � 1

Our reaction-diffusion model for inhibitor, activator, and response on our network of cells is a direct application of the model
of [1] to a network of cells,

∂tA
i = kAS(ri)− k−AAi (S1)

∂tI
i = kIS(ri)− k−IIi − kDniIi + kD

∑
j∼i

Ij (S2)

∂tR
i = kRA

i(1−Ri)− k−RIiRi (S3)

The steady states of Eq. S1 and Eq. S3 are Ai,ss = kA
k−A

Si and Ri,ss = Ai/Ii

Ai/Ii+k−R/kR
.

If the signal is constant, the response steady state is independent of the signal: we can see that if S(r) = S0, Ii,ss = Iss,

and that Ii,ss = kI
k−I

S0 and thus Ai,ss/Ii,ss = kA
k−A

k−I

kI
, independent of S0.

If the signal is not uniform, we can find the steady state of Eq. S2 perturbatively in the limit of α ≡ k−I/kD � 1. Defining
ι = kI/k−I , we find that the steady state of Eq. S2 obeys

ιαS(ri)− αIi,ss +
∑
j

LijIj,ss = 0 (S4)

where Lij = Cij − niδij , where Cij is the adjacency matrix of the graph representing cell connections, i.e. Cij = 1 if i ∼ j
and 0 otherwise. Lij is the “network Laplacian” of the graph [2]. We note that

∑
j Lij =

∑
i Lij = 0. Lij is also a W-matrix

[3], and by the properties of W-matrices will have a unique (up to normalization) zero eigenvector
∑
j LijV j = 0, assuming

that the cell cluster is connected. This eigenvector will be constant, V j = 1.
If we write Ii,ss = Ii,ss(0) + αIi,ss(1) + · · · , by equating powers of α we find that∑

j

LijIj,ss(0) = 0 (Zeroth order in α) (S5)

ιS(ri)− Ii,ss(0) +
∑
j

LijIj,ss(1) = 0 (First order in α) (S6)

We see from Eq. S5 and the properties of the network Laplacian discussed above that the zeroth order solution Ii,ss(0) must

be a constant - Ii,ss(0) = I. We can set the overall value of that constant by summing Eq. S6 over i.
∑
i Lij = 0, leading us to

conclude
I = Ii,ss(0) =

ι

N

∑
i

S(ri) = ιS (S7)

where S is the mean value of S over the cluster. This result, combined with the steady-state for A and the assumption that

Ri,ss = Ai/Ii

Ai/Ii+k−R/kR
≈ kR

k−R

Ai

Ii yields

Ri,ss ≈ kR
k−R

kA
k−A

k−I
kI

S(ri)

S
≡ R0

S(ri)

S
(S8)

as quoted in the main paper.
When can this be applied? We expect that in a time t, I will diffuse over ∼ kDt cells; we expect then that if I equilibrates

over the cluster within the time scale 1/k−I , or kD/k−I � N , we should have good gradient sensing. This implies that
α � N−1 for observing linear gradient sensing. This is merely the cluster-level version of the conditions applied for the
simple one-dimensional gradient sensing model presented in in [1].
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2 Details of co-attraction model

We assume that cells secrete a chemical with concentration c, which diffuses in a the extracellular medium with a diffusion
coefficient D, and breaks down with a rate kc. For a single cell at the origin, the equation for c(r) is then:

∂tc(r, t) = D∇2c− kcc+ sδ(r) (S9)

where s is the secretion rate. We assume that the chemical reaches steady state, ∂tc = 0. We can solve this equation via
Fourier transformation, finding that (treating our system as two-dimensional)

c(r) =
s

2πD
K0(r/`) (S10)

where `2 = D/kc and K0(x) is the modified Bessel function of the second kind. By superimposing many solutions, we find
that for cells at positions ri,

c(ri) =
s

2πD

∑
j

K0(|ri − rj |/`) (S11)

Taking the gradient of this, we find (ignoring the singularity when i = j)

∇c(ri) = − s

2πD`

∑
j 6=i

K1(|ri − rj |/`)r̂ij (S12)

We choose s = 2πD` without loss of generality; this parameter could also be rescaled into the value of χ.

3 Scattering of pairs of cells

We consider two cells that have come into the range of CIL (i.e. separated by a distance D0). Without loss of generality, we
can assume that they are separated along the x axis. In the limit of large β̄, these collisions will happen quickly (in a time
∼ 1/β̄), so we neglect stochastic noise. We can write the equations of motion of two cells. The rightmost (largest x) cell’s
position is written as xr, and the other as xl:

∂txr,l = pr,l (S13)

∂tpr,l = −τ−1pr,l ± βl,rΘ(D0 − |xr − xl|) + χl,r (S14)

We have neglected any physical forces between the cells. This is appropriate if cell-cell adhesion is weak (as in our co-attraction
simulations) and cells do not come close enough to have the volume exclusion effect be strong (reasonable if repolarization
is fast). The co-attraction creates an effect χl,r proportional to χ that moves the cells up the c(r) gradient; in the limit of
loosely attached clusters and large β̄, this can be neglected. We also note that in our minimal model, βl,r = β̄S(xl,r) is
dependent on the positions. However, in the large-β̄ limit, the cells will only move a very small amount before repolarizing
and separating – so it is appropriate to approximate βl,r as a constant for the time of contact.

We can then write equations for the separation X = xr−xl and the difference and the difference and sum of the polarities,
∆ ≡ pr − pl and Σ ≡ pr + pl:

∂tX = ∆ (S15)

∂t∆ = −τ−1∆ + (βr + βl) Θ(D0 − |X|) (S16)

∂tΣ = −τ−1Σ + (βr − βl) Θ(D0 − |X|) (S17)

If we integrate these equations from a collision at t = 0 to the point where the cells are separated, t∗, X(0) = X(t∗) = D0,
we note that |X| ≤ D0 for this entire time and Θ(D0 − |X|) = 1, so for t ≤ t∗,

X(t) = X(0) + ∆(0)(1− e−t/τ ) + (βr + βl)t− (βr + βl)τ(1− e−t) (S18)

∆(t) = ∆e−t/τ + (βr + βl)τ(1− e−t/τ ) (S19)

Σ(t) = Σe−t/τ + (βr − βl)τ(1− e−t/τ ) (S20)

We can use the requirement that X(t∗) = X(0) to find t∗ using Eq. S18; in the limit where t∗/τ � 1, this takes on a
particularly simple form:

t∗ ≈
−2∆(0)

βr + βl
. (S21)
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We note that ∆(0) must be negative for t∗ to be positive: if the cells are not traveling toward each other, they will merely
separate without repolarizing. Using Eq. S19 and Eq. S20, we then find that, assuming that the βr,l are large and thus
τ−1Σ(0)� (βr − βl),

∆(t∗) ≈ −∆(0) (S22)

Σ(t∗) ≈ Σ(0)− 2∆(0)
βr − βl
βr + βl

(S23)

We see that in this fast collision limit, if there were no chemical gradient (βr = βl), the collisions would be “elastic” and the
cells would swap polarities. However, if βr − βl is nonzero, at each collision the cell’s mean polarity increases: each collision
leads to an effective added velocity toward the chemoattractant.

Crucially, Eq. S23 shows that the increase in the total polarity of the cell pair Σ, which controls the origin of the
chemotaxis, depends only on the relative change in β across the pair, βr−βl

βr+βl
. This may provide an explanation for the

apparent adaptation. βr,l = β̄S(xr,l) and βr−βl

βr+βl
≈ S1D0/2, where the approximation holds in an exponential gradient

S(x) = S1e
S1x when S1D0 � 1.

4 Numerical convergence

We earlier selected ∆t = 10−4 in [4] to simulate near-rigid clusters; we found this sufficient in that paper to converge our
results to exact analytic results. We have also checked, in the case of amplification, where we do not have good results to
compare to, that changing the time step by a factor of two does not change our results beyond the statistical error.

In the co-attraction simulations, the time step was chosen so that results were converged to within statistical error on a
test case (N = 37, β̄ = 70, χ = 15, Fig. S1). We have also checked that changing the time step does not cause important
deviations in any of our simulations; even relatively large changes in time step do not create qualitative changes (as long as
the numerical integration is stable).

Figure S1: Reducing time steps does not create a statistically significant change beyond ∆t = 2× 10−3. n ≥ 100 trajectories
of length 50τ are used for each point. Error bars are one standard deviation of the mean, estimated by a bootstrap method.
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5 Table of parameters

Parameter Name Value (sim. units) Justification
τ Persistence time 1 Estimated from trajectories in [5]
σ OU noise parameter 1 Required to ensure cell speeds are ∼ mi-

crons/min as in [5]
β̄ CIL strength 20 (or as noted) Used in [4] to ensure cluster speeds are on

the order seen in experiments
va Adhesion strength 500 (or as noted) Chosen in [4] to make clusters perfectly rigid
vr Cell repulsion strength 500 (or as noted) Chosen in [4] to make clusters perfectly rigid
D0 Maximum interaction length 1.2 Must be roughly the size of a cell as CIL and

adhesion are short-range
kA, k−A LEGI activator rates Assumed fast Minimal assumption
kR, k−R LEGI response rates Assumed fast Minimal assumption
kI , k−I LEGI inhibitor rates 1 Set by constraint that kI cannot be signifi-

cantly slower than cell reorientation
kD Cell-cell diffusion rate 4 Roughly set by FRAP experiments [6],

though dependent on identity of I
λ Amplification switch threshold 0.01 Chosen so that front, back of clusters are ro-

bustly identified (i.e. is smaller than typical
difference in R/R0 across the cluster)

S0 Signal strength at origin 1 (or as noted)
` Degradation length 5 Estimated in [7]
g0 Gradient threshold value 10−5 Chosen to be small relative to typical gradi-

ents |∇c| but nonzero
∆t Time step 10−4 (rigid), 10−3 (co-att.) Chosen for convergence (discussed above)

Table S1: Parameters used
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