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Supplementary Fig. 2 Pollen diagram. Only those taxa are shown that are included in the 
principal curve analysis (PCA) of averaged glacial and interglacial stage data-sets. 
Percentages are calculated based on the pollen sum of these taxa. Sphagnum is plotted for 
comparison. Red indicates interglacial spectra; blue refers to glacial spectra. 
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Supplementary Fig. 4 Overview of all Uk37records and the identified minima and 
maxima. Grey dots show the raw data-points, black lines the smoothed time-series, and blue 
and red dots are the identified glacial minima and interglacial maxima, respectively. Green 
horizontal lines show the time-periods where the resolution is too low for analysis. The LR04 
δ18Ostack represents inverted values. Note that the interglacials in ODP722, ODP1143, 
ODP662, and ODP1239 are close to the warm-temperature limit of the Uk37 proxy (warmer 
than 27°C) leading to a larger uncertainty in the interglacial temperature estimates1. 
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Supplementary Fig. 5 Overview of all records and the identified minima and maxima 
for the analysis of the last 800 kyr. Grey dots show the raw data-points, black lines the 
smoothed time-series, and blue and red dots are the identified glacial minima and interglacial 
maxima, respectively. Data-sets used are EDC δD2, EDC CH4 

3, CO2 composite record4, all 
on the AICC12 chronology5 and the benthic δ18Ostack

6. The LR04 δ18Ostack represents inverted 
values. 
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Supplementary Table 1 Core-sites used for the global intercomparison of glacial and 
interglacial intensities. We only retain Uk37 records as Mg/Ca records potentially suffer 
variations due to seawater Mg/Ca on the time-scales of interest7. Mean resolution and sea-
surface temperature (SST) range were evaluated in our core-period of interest 2900–2100 
ka. Red marks temperature ranges above 27°C. (Note that for one position, in the North 
Atlantic, two records exist, DSDP60788 and U13139. We decided to analyse only DSDP607 
as both records have a similar resolution at the Plio-Pleistocene transition, but the alkenone 
record of DSDP607 is measured with the more reliable GC-FID technique, and the age 
model of DSDP607 is based on benthic oxygen isotopes, a parameter not available for 
U1313.) 
 

Core Name 
Lat 
(°N) 

Lon 
(°E) 

Mean resolution 
(kyr) 

SSTUk37 range 
(°C) 

ODP108210 -21.1 11.8 3.9 19.6-26.7 

ODP123911 -0.7 -82.1 4.8 24.0-27.9 

ODP114312 9.4 113.3 2.5 27.2-29.0 

ODP101213 32.3 -118.4 2.2 13.5-23.0 

ODP66214 -1.4 -11.7 2.0 23.5-27.4 

ODP72214 16.6 59.8 2.0 24.4-28.0 

ODP84615 -3.1 -90.8 2.1 21.2-26.4 

ODP98216 57.5 -15.9 4.8 10.5-18.3 

DSDP6078 41.0 -33.0 3.0 13.8-21.8 

ODP120817 36.1 158.2 2.3 14.9-22.4 

δ18Ostack
6 global  Global 2.5 NA 

 

  



 
 

Supplementary Table 2  

Results from redundancy analyses. Percentage of explained variation, i.e. from adjusted r2 

in averaged pollen data-sets of the Pliocene and Pleistocene glacials and interglacials using 
selected environmental variables or variable sets. The lower part indicates the percentage of 
explained variation when each climate variable is included as a single variable in RDA. 
(Asterisks represent p-values of adjusted r2: ***<0.001, **<0.01, *<0.05, .<0.1).  

 Explained variance (%) 

 Pliocene 

Interglacials 

(N=12) 

Pliocene 

Glacials 

(N=12) 

Pleistocene-like 

Interglacials 

(N=20) 

Pleistocene-like 

Glacials 

(N=20) 

Variables or variable sets used     

Climate (δ18Ostack + SST) 21.59* 18.32* 14.85. 25.50** 

Herbivory (sqrt Sporormiella%) 15.04* 12.03* 0.82 1.51 

Fire (sqrt Gelasinospora%) 12.67* 4.27 17.54* 3.59 

Disturbance (sqrt Glomus%) 6.47 0 0 7.90* 

Preceding stage climate (δ18Ostack+ 
SST) 

3.92 0.51 41.97*** 5.17 

Preceding stage vegetation (preceding 
stage PC value) 

15.22* 6.07 29.38** 3.00 

Single variables     

SST 4.32 16.08** 6.25 17.07*** 

δ18Ostack 19.40** 19.63** 17.28* 25.91*** 

SST of preceding stage 0.67 0.77 39.99*** 2.49 

δ18Ostack of preceding stage 9.44 4.86 32.28** 0.14 

 

sqrt = square root, PC = principal curves, SST = sea-surface temperature.



 
 

Supplementary Table 3 Results from redundancy analyses using temperature 
estimates from various SST records. Percentage of uniquely and jointly explained 
variation (i.e. from adjusted r2 in averaged pollen data-sets of Plio-Pleistocene transition 
(PPT) interglacials using climate variables for the contemporaneous interglacial climate and 
preceding glacial climate). (Asterisks represent p-values of adjusted r2: ***<0.001, **<0.01, 
*<0.05, .<0.1).  

 
 

Core name 
Number of 
inter-glacials 

Contemporary 
interglacial 
climate 

Preceding glacial 
climate Together 

δ18Ostack 20 5.7 22.4** 38.6*** 

SST ODP1208 20 0 27.6** 35.6*** 

SST ODP1239 18 0 29.1*** 50.8*** 

SST ODP1143 18 0 27.2** 28.9** 

SST ODP662 20 0 19.9** 23.1* 

SST ODP722 19 0 14.2* 16.3* 

SST ODP846 18 6.3 21.5** 39.9** 

SST DSDP607 20 4.6 25.9** 46.0*** 

 
SST = sea-surface temperature 

 
 
 

  



 
 

Supplementary Note 1  

Discussion about the occurrence of Pinus pumila. Pinus pumila is able to grow on 
shallow permafrost soils and is a common element in the Russian Far East mountains, 
particularly in the maritime and snow-rich Russian Far East18. However, we assume that the 
major part of the Pinus Haploxylon pollen-type is related to tree pine taxa and not to the 
shrub Pinus pumila for the following reasons. First, Pinus Haploxylon-type is highly 
correlated with Picea pollen (PPT interglacials: r=0.80, p-value = 2.708e-05, entire data-set: 
r=0.58, p-value = 4.014e-07) and not with other permafrost-tolerant shrubs such as Alnus 
fruticosa-type (PPT interglacials: r=0.09, p-value = 0.6413; entire data-set: r=0.029, p-value = 
0.8187). Second, Pinus pumila is observed to be a low pollen producer19 in contrast to tree 
pine which is known to have very high pollen productivity. Third, today Pinus pumila has a 
preference for an oceanic climate with abundant snow. Because at least during the Plio-
Pleistocene transition, sea-level was not markedly higher but in most periods markedly lower 
than today20 it is unlikely that Pinus pumila could attain a higher cover during that period than 
today when it is rather rare in the Lake El´gygytgyn area. 
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