
Supplementary Figure 1 Different types of migrations. Order of magnitude of the a force and b
displacement achieved by optical, thermal and acoustic migrations of Ag NPs in a pHEMA matrix.

Supplementary Figure 2 Temperature at the NP-pHEMA boundary. a. Absolute maximum
temperature reached in Ag NPs from a CW laser at 532 nm. b. Temperature observed after 5 ns

from the CW model compared with the pulsed model (Fig. 1c) for NPs at the maximum intensity
and maximum gradient point in the standing wave.

Supplementary Figure 3 Rewritable Bragg grating. Write-erase cycles repeated 12 times (scale
bar 1 = cm).



Supplementary Figure 4 Computation of the interaction between the nanostructure and the
electromagnetic field. Three different structures were retrieved at a 15°,b 20° and c 25° in

Denisyuk mode producing diffraction at 30°, 42° and 63° respectively.

Supplementary Note 1: Migration by optical forces

To find the displacement of the NP, the shear modulus G of the medium should be defined. In the 

case of polymers, there is a frequency and temperature dependence. Furthermore, porous materials 

can change their modulus by several orders of magnitude in humid conditions. A common technique

to retrieve the viscoelastic behavior of solids is by measuring the spectral response. The shear 

modulus G(ω)=G ' (ω)+i G ' ' (ω)  is a complex number, where the real part represents the 

conservative elasticity (storage modulus), and the imaginary the non-conservative parameter (loss 

modulus). The real and the imaginary parts are represented as a function of the angular frequency 

ω.

In a typical polymer, the complex shear modulus tends to be constant in two frequency regimes: the 

rubbery regime (low shear frequencies) and the glassy regime (high shear frequencies). 

Additionally, between these two regimes, there is a transition regime where the storage and loss 

modulus change exponentially. According to experiments performed by Lustig and Meakin1,2 in 

pHEMA, temperature and water content produce an analogous mechanical frequency shift. This 

implies that when temperature and water content increases, high frequencies behave as low 

frequencies. The translation of frequencies permits the polymer to behave as rubber and not as glass

even at high frequencies. The rubbery complex storage modulus of pHEMA is G=2.9×104+i2.0×104 

Pa, and the glassy complex storage modulus is G=1.4×109 +i2.0×107 Pa1,2. At relative humidity 

(RH) of 60% and 24 C°, pHEMA is rubbery with a constant shear modulus in the frequency regime 

of interest. This approximation is in agreement with Lustig and Meakin's measurements and our 

experimental data. 

Stokes described the relation between the speed and the force of a sphere embedded in a fluid with 

constant viscosity. However, Stokes' law cannot be applied for media with frequency dependent 



viscoelasticity (e.g. solids). The generalized Stokes' equation describes the displacement produced 

by a sphere in a solid with a shear modulus G(ω) and an oscillating force Fω(ω)3:

zω (ω)=
Fω (ω)

6π r G (ω)
 1

The complex frequency dependent position zω(ω) provides the amplitude and phase components of 

the oscillation. Both, the real and imaginary parts of the shear modulus contribute to the 

displacement of the NP. However, only the non-conservative part iG''(ω) produces permanent 

migration.

To obtain the displacement, we define the average intensity of a standing wave produced by a 

Gaussian pulse of energy Up and width σ (the standard deviation σ of the Gaussian can be obtained 

with the Full Width at Half Maximum (FWHM) tp with the relation t p=σ 2√2 ln(2) ). In the case

of two counter propagating waves normal to the z axis with phase zero, and wave number

k=2π
neff

λ
, the average intensity profile is:

I ( z , t)=2(1+sin (2 k z ))
U p

σ √2π
e

−t 2

2σ2
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The component of the gradient ∇I in the direction of propagation is: 

d I
d z

=4k cos (2k z )
U p

σ √2 π
e

−t2

2σ2
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The optical force is proportional to the gradient of the irradiance Fp∝∇ I .  A relative maximum 

force Fp
max is defined as a proportionality constant that satisfies:

Fp=F p
max

∇ I  4

The value of the force in the z axis becomes:



F p=4 F p
max k cos (2 k z )

U p

σ √2 π
e

−t2

2σ 2
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and in frequency domain (Fourier transform) is:

F ω(ω)=4 F p
max k cos(2k z)U p e

−σ2 ω2

2  6

The term cos (2 k z )  is considered constant because the displacement during the pulse is minimal

compared to the wavelength. Hence, we find the frequency dependent displacement.

zω (ω)=
2 F p

max k cos(2k z)U p

3π r
e

−σ 2 ω2

2

G(ω)
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The total amplitude is obtained with the contribution of all frequencies:

z p=
2 F p

max k cos (2 k z )U p

3π r
|∫
−∞

∞
1

G(ω)
e

−σ 2 ω2

2 dω|  8

The non-conservative displacement is found with the imaginary part of the shear modulus iG''(ω). 

In contrast to fluids, solids tend to have constant shear modulus in large regimes. When G''(ω) is 

approximated as a constant, the total displacement can be obtained as:

z p=
2 F p

max k cos (2 k z )U p

3 π r G ' ' (√2π
σ )≈1.25

F p
max k cos (2 k z )U p

rG ' ' t p
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For high repetition rates, the total displacement with differentials is:

dz=1.25
F p

max k cos (2k z )
r G' ' t p

dU  10

Starting from z0 to a position z:



∫
z 0

z
1

cos(2 k z )
dz=∫

0

U

1.25
F p

max k
r G ' ' t p

dU  11

Then:

ln|tan(k z+π /4)|−ln|tan(k z0+π / 4)|=2.5
F p

max k 2

r G ' ' t p

U  12

The displacement from the maximum gradient point (z0=0) after a total exposure energy U is:

Δ z=arctan (exp(
2.5F p

max k 2

r G ' ' t p

U ))/ k−
π

4k
 13

which can be approximated close to maximum gradient point as:

Δ z≈
1.25 F p

max k
rG ' ' t p

U  14

Supplementary Note 2: Thermophoretic and acoustophoretic migration

Thermal and acoustic forces occur due to gradients of temperature in the medium. In 

thermophoresis (or thermodiffusion), the entropy of NPs results in migration from high to low 

intensity regions. In acoustophoresis, a transient of temperature produces a mechanical pressure that

migrates NPs to low intensity regions. These two properties can be applied to model the 

temperature distribution, either conceptualizing the composite as homogeneous or inhomogeneous. 

Since NPs are randomly arranged in the pHEMA matrix, we approximate the composite as 

homogeneous to retrieve the effective behavior.

Heat and pressure can be highly dissipative at the nanoscale4. Considering the thermal diffusivity of 

the medium αm, the pulse length should be shorter than the confinement of temperature

t p<
λ2

32 nm
2 α m

. If the heat source is constant, the temperature gradient can also be approximated as

a constant after this period. Pressure dissipation occurs at higher speed than heat because acoustic 



waves propagate faster. Considering the speed of sound in the medium cm, the pulse length should 

be shorter than the acoustic confinement t p<
λ

4nm cm

. In the present work, the thermal 

confinement is about three fold larger than the pulse length, and therefore, we approximate the 

energy transfer from light as instantaneous. However, pressure confinement is about two orders of 

magnitude shorter than the pulse length. Hence, the effective difference of pressure between fringes 

is considered.

In thermophoresis, the force FT produced is proportional to the gradient of temperature

FT ∝∇ T 5. The thermodiffusive velocity of the NP is: 

d x
dt

=−Dc ∇ T  15

where Dc is the thermodiffusion coefficient of the composite. Although Dc is well established in 

aerosols, its value remains controversial for liquids and solids6,7. In the present work we applied 

Brenner's model, which has shown consistency with the experimental work for viscous liquids5,8:

Dc=
αm , βm

1+(K NP /(2 Km))
 16

where αm, βm, Km, are the thermal diffusivity, thermal expansion and thermal conductivity of the 

medium respectively, and αm and KNP are the thermal diffusivity and thermal conductivity of the NP. 

The heat equation can describe the distribution of temperature in time. When the pulse time is 

shorter as compared to the heat diffusion time, the optical energy Up is transferred instantaneously 

to thermal energy Ut producing an increment of temperature ΔT. For a standing wave at time zero 

ΔT is:

ΔT =
αeff

K eff

U t=
αeff

K eff

σ ∫
−∞

∞

2 I 0(1+sin (2 k z ))d t=2σ U p

αeff

K eff

(1+sin (2 k z ))  17

where αeff and Keff are the effective diffusivity and conductivity of the composite, and σ is the optical

absorption coefficient from Beer's law (the properties of the medium can be used for low 



concentration of NPs)9. After the optical energy produces an increment in the temperature, the heat 

diffuses with time until the gradient disappears. Based on the heat equation, a sinusoidal 

temperature function remains sinusoidal while it dissipates heat but decreases in its intensity as

exp(−4αm k 2 t) . The component of the gradient ∇T in the direction of propagation with the 

exponential decrement in time is:

d T
d z

=4 k σ U p

αm

K m

cos(2 k z )e−4 α m k2 t  18

By combining 18 and 15, the thermophoretic velocity is:

d z
d t

=−4 k Dc σ U p

α m

K m

cos (2 k z )e−4αm k2 t  19

and the total thermophoretic displacement ΔzT from the maximum gradient point is:

Δ z T=arccot (exp (
2 Dc σ U p

K m

)) /k−
π

4 k
≈−

Dc σ U p

k K m

 20

The thermodiffusive force FT at the maximum gradient point is approximated with the generalized 

Stokes' law:

FT≈−
6π r G ' ' Dc σ U p

k K m

 21

Additionally, acoustic forces arise when a difference in pressure is produced in the medium due the 

increment of temperature. By analyzing the fluid dynamics of a rigid sphere in a liquid, the acoustic

force exerted Fa and the acoustic energy Ua is correlated10:

Fa=−2π r3
∇ U a  22

If the acoustic energy is expressed in terms of the pressure difference Δp and the density of the 

material ρm, the acoustic force is:



Fa=
−π r3

ρm cm
2 ∇(Δ p)

2  23

The pressure difference can be found with the solution of the inhomogeneous wave equation, where

the input source is extracted from the difference in temperature. To simplify, the difference in 

pressure is considered constant. Its value is approximated with the difference in temperature 

achieved during the confinement time (the effective reduction is proportional to 
λ

4 nm cm t p

4):

Δ p≈βm ρmcm
2
ΔT (

λ
4nm cm t p

)=
λ βm ρm cm σ αm U p

2nm t p K m

(1+sin(2 k z ))  24

Hence, the acoustic force as a function of position is:

F a=−
8π3 r3 ρm

k
(

σ β m α mU p

K m t p

)
2

cos (2 k z )(1+sin(2k z ))  25

Similarly, the displacement is extracted from the generalized Stokes' law:

Δ z a=
4π 2r 2 ρm

3G ' ' k
(
σ βm αm U p

K m t p

)
2

cos(2k z )(1+sin(2k z ))  26

and the total displacement at the maximum gradient point Δza after a pulse of length tp is 

approximated as:

Δ z a≈
4 π 2 r2 ρm

3 G ' ' k
(

σ β m α mU p

K m t p

)
2
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Both, acoustophoretic and thermophoretic models are punctual. For NPs of size comparable to the 

wavelength it is necessary to consider the wrapping of the standing wave. Supplementary Figure 2a 

and 2b shows the order of magnitudes of the force and displacement respectively at the maximum 

gradient point achieved by optical (blue), thermal (red) and acoustic (green) foreces for Ag NPs 

embedded in pHEMA medium with a pulsed Nd:YAG laser (532 nm and 5 ns). It can be concluded 

that, under these conditions, NPs migrate predominantly by optical forces.



Supplementary Note 3: Heating model

The temperature of the system can be obtained by solving the heat equation of a sphere embedded 

in the pHEMA matrix. In the case of radiation ICW, the solution of the heat equation in time and 

space for a sphere of radius rs can be approximated as:

T CW(r , t)= I CW q(1−e
−

α NP

KNP T∞(r )
t

)T ∞ (r )  28

where KNP, αNP are the thermal conductivity and diffusivity of the NP respectively. The variable q is 

the heat per unit of volume per watt when a NP absorbs light:

q=
3
4

C ab

r s

 29

The absorption efficiency Cab is retrieved from the GLMT (0.1-0.3 for Ag NPs in this regime). The 

function T∞(r) represents the equilibrium temperature that is achieved after an infinite time:

T ∞(r )={
(

rs
2

3 K m

+
rs

2
−r 2

6 K NP

) for r<r s (inside)

(
rs

3

3r K m

) for r>rs (outside )

(
rs

2

3K m

) for r=rs (surface ) }   30

The time dependence of the temperature at the surface of the NP is reduced to:

T CW(r s , t)= I CWC ab(
r s

4 K m

)(1−e−β t
)  31

where

β=
3 K m αNP

K NP r s
2  32



Supplementary Figure 1a shows the temperature at the surfaces of Ag NPs embedded in pHEMA 

for a continuous wave (CW) laser with an intensity ICW = 40 GW m-2 until equilibrium (as analogy 

of the intensity found at the maximum gradient point for two counter-propagating pulses of 10 mJ 

cm-2 in 5 ns). Similarly, the solution for a Gaussian pulse has been calculated numerically according

to the experimental parameters. Supplementary Figure 1b illustrates the results for the absolute 

maximum of temperatures in different NP diameters and at the maximum gradient point for CW and

a Gaussian laser pulse.

Supplementary Note 4: Reconfigurability

The recorded pattern can be erased by arranging a multilayer structure parallel to the mirror surface 

plane. This process aligns the diffraction with the specular reflection (zero order). The previous 

pattern can be partially erased or fully erased depending on the number of pulses applied. The 

patterning process is reversible and the same emulsion may be used for multiple times without any 

noticeable change in diffraction efficiency. We have repeated this process over 100 times by using 

different objects with no fatigue in the composite (Supplementary Figure 3). 

Supplementary Note 5: Photonic structure model

Finite element method (FEM) was used for simulating the diffraction behavior of the Bragg gratings

recorded at different angles. A MATLAB code was used for calculating the standing wave 

interference patterns (between emitted and reflected beams in Denisyuk mode) within the pHEMA 

matrix, when illuminated at different angles. These interference patterns are eventually responsible 

for configuring the 3D arrangement of NPs within the pHEMA matrix, producing the optical 

structures. Additionally, the internal reflection was considered in the model. The interference 

patterns were imported into the FEM code and treated as effective refractive index regions with and 

without NPs. The effective refractive index used was 1.42 with an oscillation Δn of 0.01. In the 

model, a broadband light source was irradiated on the photonic Bragg gratings and the resulting 

reflection and diffraction properties were analyzed. The gratings reflected broadband light normally 

and diffracted monochromatic light at angles approximately twice the angle used for holographic 

writing (Supplementary Figure 4).



Safety Considerations for Laser Use: The fabrication method described involves the use of a class 

IV laser. The operators must be trained and aware of the hazards of laser exposure to the bare skin 

and eye. Appropriate laser wavelength rated safety googles must be worn and the lasers must be 

operated with safety precautions. For example, reflection of laser light from mirrors and other 

reflecting surfaces described in the experimental section may cause damage to an untrained 

researcher. 
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