Package 'Mpath'

February 22, 2016

Type Package

Title Mpath: a single-cell RNAseq data analysis algorithm that maps multi-branching single-cell trajectories revealing cell progression during development.

Version 1.0

Date 2016-02-17

Author Dr Jinmiao CHEN

Maintainer Dr Jinmiao CHEN <chen_jinmiao@immunol.a-star.edu.sg>

Description This package provides a new single-cell RNAseq data analysis algorithm that maps multibranching cell developmental pathways and aligns individual cells along the continuum of developmental trajectories. Mpath computationally reconstructs cell developmental pathways as a multi-destination journey on a map of connected landmarks wherein individual cells are placed in order along the paths connecting the landmarks. To achieve that, it first identifies clusters of cells and designates landmark clusters each defines a discrete cellular state. Subsequently it identifies and counts cells that are potentially transitioning from one landmark state to the next based on transcriptional similarities. It then uses the cell counts to infer putative transitions between landmark states giving rise to a state transition network. After that, Mpath sorts individual cells according to their various stages during transition to resemble the landmark-to-landmark continuum. Lastly, Mpath detects genes that were differentially expressed along the single-cell trajectories and identifies candidate regulatory markers.

License What license is it under?

Imports VGAM,

ggplot2, gplots, plyr, reshape2

RoxygenNote 5.0.1

R topics documented:

Mpath-package	 	 	 2
build_network	 	 	 6
color_code_node_2	 	 	 7
find_optimal_cluster_number	 	 	 8
heatmap_nbor	 	 	 9
landmark_designation	 	 	 10
nbor_order	 	 	 11
pseudotimePlotByGenes	 	 	 12

Mpath-package

QC_gene	13
SC_anova	13
SC_hc	14
SC_hc_colorCode	15
trim_net	16
vgam_deg	16
vgam_perGene	17
	18

Index

Mpath-packageMpath: an analysis algorithm that maps multi-branching single-cell
trajectories from single-cell RNA-sequencing data

Description

This package provides a new algorithm that maps multi-branching cell developmental pathways and aligns individual cells along the continuum of developmental trajectories. Mpath computationally reconstructs cell developmental pathways as a multi-destination journey on a map of connected landmarks wherein individual cells are placed in order along the paths connecting the landmarks. To achieve that, it first identifies clusters of cells and designates landmark clusters each defines a discrete cellular state. Subsequently it identifies and counts cells that are potentially transitioning from one landmark state to the next based on transcriptional similarities. It then uses the cell counts to infer putative transitions between landmark states giving rise to a state transition network. After that, Mpath sorts individual cells according to their various stages during transition to resemble the landmark-to-landmark continuum. Lastly, Mpath detects genes that were differentially expressed along the single-cell trajectories and identifies candidate regulatory markers.

Examples

Install and load Mpath package

rpkmFile = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG.txt";

Mpath-package

```
sampleFile = "sample_GSE60783_noOutlier.txt";
find_optimal_cluster_number(rpkmFile = rpkmFile,
                             sampleFile = sampleFile,
                            min_cluster_num = 7, max_cluster_num = 15,
                            diversity_cut = 0.6, size_cut = 0.05)
### Landmark designation
rpkmFile = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG.txt";
baseName = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG";
sampleFile = "sample_GSE60783_noOutlier.txt";
landmark_cluster <- landmark_designation(rpkmFile = rpkmFile,</pre>
                                          baseName = baseName,
                                          sampleFile = sampleFile,
                                          method = "diversity_size",
                                          numcluster = 11, diversity_cut=0.6,
                                          size_cut=0.05)
### Plot hierachical clustering
dataFile = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG.txt";
SC_hc_colorCode(dataFile = dataFile,
                cuttree_k = 11,
                sampleFile= "sample_GSE60783_noOutlier.txt",
                width = 22, height = 10, iflog2 = TRUE,
                colorPalette = c("red", "green", "blue"))
### Construct weighted neighborhood network
exprs = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG.txt";
baseName = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG";
neighbor_network <- build_network(exprs = exprs,</pre>
                                  landmark_cluster = landmark_cluster,
                                  baseName = baseName)
### TrimNet: trim edges of lower weights
baseName = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG";
trimmed_net <- trim_net(neighbor_network,textSize=30,</pre>
                        baseName = baseName,
                        method = "mst")
### plot trimmed net and color-code the nodes by gene expression
rpkmFile="TPM_GSE60783_noOutlier.txt";
lmFile="TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG_landmark_cluster.txt";
color_code_node_2(networkFile=trimmed_net,
                  rpkmFile=rpkmFile,
                  lmFile=lmFile,
                  geneName=c("Irf8","Id2","Batf3"),
                  baseName="cDC1_marker",
                  seed=NULL)
### Re-order the cells on the path connecting landmark
### "CDP_2", "CDP_1", "PreDC_9", "PreDC_3"
exprs = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG.txt";
```

Mpath-package

```
ccFile = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG_landmark_cluster.txt";
order <- nbor_order(exprs = exprs,</pre>
                   ccFile = ccFile,
                   lm_order = c("CDP_2", "CDP_1", "preDC_9", "preDC_3"),
                   if_bb_only=FALSE,
                   method=1)
### identify genes that changed along the cell re-ordering
deg <- vgam_deg(exprs = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup.txt",</pre>
               order = order,
               lm_order = c("CDP_2", "CDP_1", "preDC_9", "preDC_3"),
               min_expr=1,
               p_threshold=0.05)
### plot heatmap of genes that changed along the cell re-ordering
heatmap_nbor(exprs = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup.txt",
            cell_order = "CDP_2_CDP_1_preDC_9_preDC_3_order.txt",
            plot_genes = "CDP_2_CDP_1_preDC_9_preDC_3_vgam_deg0.05.txt",
            cell_annotation = "sample_GSE60783_noOutlier.txt",
            num_gene_cluster = 6,
            hm_height = 15, hm_width = 10,
            baseName = "CDP_2_CDP_1_preDC_9_preDC_3_order_vgam_deg0.05")
****
### Analysis of human myoblast dataset GSE52529 ###
****
setwd(paste(path, "/GSE52529", sep=""))
### remove low detection rate genes
QC_gene(rpkmFile = "GSE52529_fpkm_matrix_nooutliers.txt",
       rpkmQCFile = "GSE52529_fpkm_matrix_nooutliers_geneQC0.05anyGroup.txt",
       sampleFile = "sample_nooutlier.txt",threshold=0.05,method="any")
rpkmFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt";
sampleFile = "sample_nooutlier.txt";
find_optimal_cluster_number(rpkmFile = rpkmFile,
                           sampleFile = sampleFile,
                           min_cluster_num = 7, max_cluster_num = 18,
                           diversity_cut = 0.9, size_cut = 0.05)
rpkmFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt";
baseName = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG";
landmark_cluster <- landmark_designation(rpkmFile = rpkmFile,</pre>
                                        baseName = baseName,
                                        sampleFile = "sample_nooutlier.txt",
                                        method = "diversity_size",
                                        numcluster = 14, diversity_cut=0.9,
                                        size_cut=0.05)
SC_hc_colorCode(dataFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt",
               cuttree_k = 14,
               sampleFile= "sample_nooutlier.txt",
               width = 22, height = 10, iflog2 = TRUE)
```

```
### Construct weighted neighborhood network
exprs = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt";
neighbor_network <- build_network(exprs = exprs,</pre>
                                   landmark_cluster = landmark_cluster)
### TrimNet: trim edges of lower weights
trimmed_net <- trim_net(neighbor_network,textSize=30,</pre>
                       baseName = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG",
                       method = "mst")
### Color code the landmarks with marker expression
networkFile="GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG_state_transition_mst.txt";
lmFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG_landmark_cluster.txt";
rpkmFile = "GSE52529_fpkm_matrix_nooutliers_geneSymbol.txt";
geneName=c("SPHK1","PBX1","XBP1","ZIC1","MZF1","CUX1","ARID5B","POU2F1","CDK1","MYOG");
color_code_node_2(networkFile = networkFile,
                  rpkmFile = rpkmFile,
                  lmFile = lmFile,
                  geneName = geneName,
                  baseName = "Marker",
                  seed=3)
### path 1: "T0_2","T0_1","T24_8","T48_10","T72_13"
ccFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG_landmark_cluster.txt";
order <- nbor_order(exprs = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt",</pre>
                    ccFile = ccFile,
                    lm_order = c("T0_2", "T0_1", "T24_8", "T48_10", "T72_13"),
                    if_bb_only=TRUE,
                    method=1)
deg <- vgam_deg(exprs = "GSE52529_fpkm_matrix_nooutliers_geneQC0.05anyGroup.txt",</pre>
               order = order,
               lm_order = c("T0_2", "T0_1", "T24_8", "T48_10", "T72_13"),
               min_expr=1,
               p_threshold=0.05)
heatmap_nbor(exprs = "GSE52529_fpkm_matrix_nooutliers_geneQC0.05anyGroup.txt",
            cell_order = order,
            plot_genes = row.names(deg),
            cell_annotation = "sample_nooutlier.txt",
            num_gene_cluster = 6,
            hm_height = 15, hm_width = 10,
            baseName = "GSE52529_path1_order_vgam_deg0.05")
### path 2: "T0_2","T0_1","T24_7","T48_4","T72_14"
ccFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG_landmark_cluster.txt";
order <- nbor_order(exprs = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt",
                    ccFile = ccFile,
                    lm_order = c("T0_2", "T0_1", "T24_7", "T48_4", "T72_14"),
                    if_bb_only = TRUE,
                    method=1)
```

```
deg <- vgam_deg(exprs = "GSE52529_fpkm_matrix_nooutliers_geneQC0.05anyGroup.txt",</pre>
               order = order,
               lm_order = c("T0_2", "T0_1", "T24_7", "T48_4", "T72_14"),
               min_expr=1,
               p_threshold=0.05)
heatmap_nbor(exprs = "GSE52529_fpkm_matrix_nooutliers_geneQC0.05anyGroup.txt",
            cell_order = order,
            plot_genes = row.names(deg),
            cell_annotation = "sample_nooutlier.txt",
            num_gene_cluster = 6,
            hm_height = 15, hm_width = 10,
            baseName = "GSE52529_path2_order_vgam_deg0.05")
### Generate Figure 5
ccFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG_landmark_cluster.txt";
order1 <- nbor_order(exprs = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt",</pre>
                     ccFile = ccFile,
                      lm_order = c("T0_2", "T0_1", "T24_8", "T48_10", "T72_13"),
                      if_bb_only=TRUE,
                     method=1)
ccFile = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG_landmark_cluster.txt";
order2 <- nbor_order(exprs = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt",
                     ccFile = ccFile,
                     lm_order = c("T0_2", "T0_1", "T24_7", "T48_4", "T72_14"),
                     if_bb_only=TRUE,
                     method=1)
deq1 <- read.table("T0_2 T0_1_T24_8_T48_10_T72_13_vqam_deq0.05.txt",sep="\t",header=T)
deg2 <- read.table("T0_2_T0_1_T24_7_T48_4_T72_14_vgam_deg0.05.txt",sep="\t",header=T)
deg <- unique(c(as.character(deg1[,1]),as.character(deg2[,1])))</pre>
heatmap_nbor(exprs = "GSE52529_fpkm_matrix_nooutliers_ANOVA_p0.05_DEG.txt",
            cell_order = c(order1, order2),
            plot_genes = deg,
            cell_annotation = "sample_nooutlier.txt",
            num_gene_cluster = 7,
            hm_height = 15, hm_width = 10,
            baseName = "Path12_method1orderedbackbone_progression_heatmap",
            n_linechart = list(order1,order2))
```

build_network build_network constructs weighted neighborhood network

Description

build_network constructs weighted neighborhood network

Usage

```
build_network(exprs, landmark_cluster, distMethod = "euclidean",
baseName = NULL)
```

Arguments

exprs:	a data frame or matrix of expression data(ie. rpkm, TPM, fpkm) containing cells
	in columns and genes in rows
landmark_clu	ster:
	a data frame or matrix of two columns or a tab delimited file of landmark cluster
	assignment of individual cells. The first column indicates cell ID, the second column indicates the landmark cluster which the cell was assigned to.
dist_method:	the method for calculating dissimilarity between cells. distMethod can be one of "pearson", "kendall", "spearman" or "euclidean". Default is "euclidean".

Value

a matrix of weighted neighborhood network, column and row names are landmarks, the values represent the weights of the edges connecting two landmarks

Examples

color_code_node_2 color_code_node_2 plot state transition network in which nodes i.e. landmarks are color-coded by average expression of the given gene

Description

color_code_node_2 plot state transition network in which nodes i.e. landmarks are color-coded by average expression of the given gene

Usage

```
color_code_node_2(networkFile, rpkmFile, lmFile, geneName, baseName = NULL,
    seed = NULL)
```

Arguments

networkFile:	a tab delimited file containing a matrix of trimmed state transition network, col- umn and row names are landmarks, the values are 0 or 1 indicating whether the two landmarks are connected.
rpkmFile:	a tab delimited txt file of expression data, containing cells in columns and genes in rows
lmFile:	a tab delimited file of landmark cluster assignment of individual cells. The first column indicates cell ID, the second column indicates the landmark cluster which the cell was assigned to.
geneName:	gene name or a vector of gene names
baseName:	prefix name of resulting files

Examples

find_optimal_cluster_number

find_optimal_cluster_number identifies the optimal number of initial cluster number by searching from min_cluster_num to max_cluster_num

Description

find_optimal_cluster_number identifies the optimal number of initial cluster number by searching from min_cluster_num to max_cluster_num

Usage

```
find_optimal_cluster_number(rpkmFile, sampleFile, min_cluster_num = 7,
    max_cluster_num = 13, diversity_cut = 0.6, size_cut = 0.05)
```

Arguments

rpkmFile:	a tab delimited txt file of expression data, containing cells in columns and genes in rows	
sampleFile:	a tab delimited txt file of sample annotation with two columns, the first column is cell ID, the second column is group ID	
min_cluster_num:		
	minimum number of initial clusters	
<pre>max_cluster_num:</pre>		
	maximum number of initial clusters	
diversity_cut:		
	the cutoff value of diversity for differentiating landmark clusters from non- landmark clusters. The diversity of a landmark cluster must be below this cutoff.	
size_cut:	the cutoff value of size i.e. number of cells for differentiating landmark clusters from non-landmark clusters. The number of cells in a landmark cluster must be greater than this cutoff.	

heatmap_nbor

Examples

heatmap_nbor heatmap_nbor plot heatmap of gene expression

Description

heatmap_nbor plot heatmap of gene expression

Usage

```
heatmap_nbor(exprs, cell_order, plot_genes, cell_annotation,
    num_gene_cluster = 4, hm_height = 10, hm_width = 10, baseName,
    colorPalette = NULL, n_linechart = NULL)
```

Arguments

exprs	a data frame or matrix of expression data(ie. rpkm, TPM, fpkm) containing cells in columns and genes in rows
cell_order	a vector storing the order of cells with cell ID or name, same as appeared in column names of $\tt exprs$
plot_genes	a vector storing the genes selected for plot, same as appeared in the row names of ${\tt exprs}$
cell_annotat	ion
	a two column data frame or matrix annotating cells(cell ID or name) with cell types
num_gene_clu	ster
	a integer indicating the number of gene clusters to generate by cutting the den- drogram tree, if num_gene_cluster = NULL, no gene clusters will be generated
hm_height	an integeter to specify the heatmap height
hm_width	an integeter to specify heatmap width
baseName	a character string to specify the prefix of name of result files
colorPalette	a character vector to specify the color scheme of column side bar that labels cell type of individual cells. Default value is NULL, a default color scheme will be deployed. Alternatively users can specfiy their desired color paletter, for exam- ples, colorPalette=c("red","green","blue","black","orange","purple","burlywood4")
n_linechart	a string vector to specify for which cell ordering to plot the line chart. Default value is NULL, all the cells in cell_order will be plot. Alternatively, users could specify, for examples two line charts, by n_linechart = list(c("cell1","cell2"),c("cell3","cell4"))

Examples

```
landmark_designation
```

landmark_designation clusters cells and determines landmark clusters

Description

landmark_designation clusters cells and determines landmark clusters

Usage

```
landmark_designation(rpkmFile, baseName, sampleFile, distMethod = "euclidean",
method = "kmeans", numcluster = NULL, diversity_cut = 0.6,
size cut = 0.05, saveRes = TRUE)
```

Arguments

rpkmFile:	a tab delimited txt file of expression data, containing cells in columns and genes in rows	
baseName:	a character string indicating of prefix name of resulting files	
sampleFile:	a tab delimited txt file of sample annotation with two columns, the first column is cell ID, the second column is group ID	
dist_method:	the method for calculating dissimilarity between cells. distMethod can be one of "pearson", "kendall", "spearman" or "euclidean". Default is "euclidean".	
method:	method for distinguishing landmark clusters from non-landmark clusters.method can be "kmeans" or "diversity" or "size" or "diversity_size". When method="diversity", numlm needs to be specified. Default is "diversity_size".	
numcluster:	number of initial clusters	
diversity_cut:		
	the cutoff value of diversity for differentiating landmark clusters from non- landmark clusters. The diversity of a landmark cluster must be below this cutoff.	
size_cut:	the cutoff value of size i.e. number of cells for differentiating landmark clusters from non-landmark clusters. The number of cells in a landmark cluster must be greater than this cutoff.	
saveRes:	a boolean to indicate whether to save result files	

Value

a dataframe of two columns, the first column is cell ID, the second column is the landmark cluster the cell belongs to

nbor_order

Examples

```
rpkmFile = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG.txt";
baseName = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup_CD4vsCD8DEG";
sampleFile = "sample_GSE60783_noOutlier.txt";
landmark_cluster <- landmark_designation(rpkmFile = rpkmFile,
baseName = baseName,
sampleFile = sampleFile,
method = "diversity_size",
numcluster = 11, diversity_cut=0.6,
size_cut=0.05)
```

nbor_order	nbor_order sorts individual cells according to their various stages
	during transition to resemble the landmark-to-landmark continuum

Description

nbor_order sorts individual cells according to their various stages during transition to resemble the landmark-to-landmark continuum

Usage

```
nbor_order(exprs, ccFile, lm_order = c("CD115+CDP_1", "PreDC_9", "PreDC_10",
    "PreDC_11"), if_bb_only = FALSE, method = 1)
```

Arguments

exprs:	a data frame or matrix of expression data(ie. rpkm, TPM, fpkm) or a tab delim- ited txt file of expression data, containing cells in columns and genes in rows
ccFile:	a data frame or matrix of two columns or a tab delimited file of landmark cluster assignment of individual cells. The first column indicates cell ID, the second column indicates the landmark cluster which the cell was assigned to.
lm_order:	a vector of landmark IDs indicating along which path the cells are to be sorted
if_bb_only:	a boolean to indicate if only cells on backbone will be sorted. Default is FALSE
method:	1 or 2 to indicate which method to be used for sorting. Default is 1

Value

a vector of re-orderd cell IDs

Examples

```
pseudotimePlotByGenes
```

pseudotimeplotByGenes

Description

pseudotimeplotByGenes

Usage

```
pseudotimePlotByGenes(exprs, if_log2 = TRUE, cell_annotation, cell_order,
    plot_genes = NULL, reverse_order = FALSE, min_expr = -3,
    cell_size = 2, plot_cols = NULL,
    trend_formula = "expression ~ sm.ns(Pseudotime, df=3)")
```

Arguments

exprs	a data frame or matrix of log transformed expression data, with row of cells and column of genes	
cell_annotat	ion	
	a two column data frame of matrix annotating cells(cell ID or name) with cell types	
cell_order	a vector stroing the order of cells with cell ID or name, same as appeared in row names of exprs	
plot_genes	a vector storing the genes selected for plot, same as appeared in the column names of exprs, if NULL, all genes in exprs will be selected	
cell_size	the size of cells in the plot	
trend_formula		
	the formula for regression analysis	
min_exprs	the threshold for cutting of the cell expressions in regression values, values lower than this will be forced to min_exprs	

Value

a object of ggplot

Examples

QC_gene

 QC_{gene} removes genes that have TPM values < 1 in more than 95 percent of cells in each group

Description

 QC_{gene} removes genes that have TPM values < 1 in more than 95 percent of cells in each group

Usage

```
QC_gene(rpkmFile = "TPM_monocyte_Mar2015_noOutlier.txt",
    rpkmQCFile = "TPM_monocyte_Mar2015_noOutlier_geneQC0.05perGroup.txt",
    sampleFile = "monocyte_sample_Mar2015_noOutlier.txt", threshold = 0.05,
    method = "any")
```

Arguments

rpkmFile	a tab delimited file containing expression data (TPM, CPM, FPKM, etc), columns are cells and rows are genes.
rpkmQCFile	resulting file after QC
sampleFile	a tab delimited file containing sample annotations with two columns. The first column indicates SampleID, the second column indicates GroupID.
threshold	the cutoff of percentage of cells in which the given gene is not expressed.Default is 0.05.
method	keep genes whose rpkm values are not less than 1 in at least 5 percent of the cells in every group, method="any": keep genes whose rpkm values are not less than 1 in at least 5 percent of the cells in any group. Default is 'any'.

Examples

SC_anova

SC_anova run ANOVA test to identify differentially expressed genes

Description

SC_anova run ANOVA test to identify differentially expressed genes

Usage

SC_anova(inputfile, targetfile, iflog2, p_threshold, factor, baseName)

Arguments

inputfile:	a tab delimied file containing expression values (TPM, CPM, FPKM, etc). Columns are cells and rows are genes.
targetfile:	a tab delimited file indicating cell annoation with two columns. The first column indicates cell ID, the rest columns indicates cell annotations.
iflog2:	a boolean value to indicate whether the expression values will be log2 transformed.
p_threshold:	the cutoff of p values for DEGs.
factor:	column name of targetfile, indicating which column will be used as cell annota- tion for comparison.
baseName:	prefix name of resulting files.

Examples

SC_ł	lC
------	----

SC_hc hierachical clustering of single cells

Description

SC_hc hierachical clustering of single cells

Usage

```
SC_hc(dataFile, baseName, cuttree_k = 4)
```

Arguments

dataFile:	a tab delimited txt file of expression data, columns are cells, rows are genes
baseName:	prefix name of resulting files
cuttree_k:	number of clusters to be generated by cutting the dendrogram.

SC_hc_colorCode

SC_hc_colorCode hierarchical clustering of single cells, leaves color-coded by cell type information.

Description

SC_hc_colorCode hierarchical clustering of single cells, leaves color-coded by cell type information.

Usage

```
SC_hc_colorCode(dataFile, baseName = NULL, cuttree_k = NULL,
sampleFile = NULL, width = 22, height = 10, iflog2 = TRUE,
colorPalette = NULL, distMethod = "Euclidean")
```

Arguments

dataFile:	a tab delimited txt file of expression data, columns are cells, rows are genes.
baseName:	prefix name of resulting files
cuttree_k:	number of clusters to be generated by cutting the dendrogram. cuttree_k can be an integer or NULL. If NULL, no clusters will be generated.
sampleFile:	a tab delimited txt file of cell annotation, the first column is cell ID, the second column is group ID.
width:	width of the resulting figure
height:	height of the resulting figure
iflog2:	a boolean value indiciating if the expression data will be log2 transformed.
colorPalette:	
	if NULL, brewer.pal(n, "Set2") will be used, or colorPalette can be c("red", "green", "blue").
distMethod:	distMethod can be one of "pearson", "kendall", "spearman" or "Euclidean"

Examples

trim_net

Description

trim_net trimms the weighted neighborhood network by removing edges of lower weights

Usage

```
trim_net(nb12, textSize = 20, baseName = NULL, method = "mst",
   start = "MDP_6")
```

Arguments

nb12:	a matrix of weighted neighborhood network, column and row names are land- marks, the values represent the weights of the edges connecting two landmarks
baseName:	a character string indicating the prefix name of resulting files
method:	trimming method, method can be one of "TrimNet" or "mst". When method="TrimNet" the initial node needs to be specified. Default is "mst"
start:	starting landmark, needs to be specified when method="TrimNet".

Value

a matrix of trimmed state transition network, column and row names are landmarks, the values are 0 or 1 indicating whether the two landmarks are connected.

Examples

vgam_deg

vgam_deg identifies genes that were differentially expressed along the re-ordered single-cell trajectories using vgam

Description

vgam_deg identifies genes that were differentially expressed along the re-ordered single-cell trajectories using vgam

Usage

```
vgam_deg(exprs = "TPM_GSE60783_noOutlier_geneQC0.05anyGroup.txt", order,
lm_order = c("CD115+CDP_2", "CD115+CDP_1", "PreDC_9", "PreDC_3"),
min_expr = 1, p_threshold = 0.05)
```

vgam_perGene

Arguments

exprs:	a data frame or matrix of expression data(ie. rpkm, TPM, fpkm) or a tab delim- ited txt file of expression data, containing cells in columns and genes in rows
order:	a vector of re-ordered cell IDs
lm_order:	a vector of landmark IDs indicating along which path the cells are to be sorted
min_expr:	a numeric value indicating the minimum TPM value for a gene to be considered as expressed. Default is 1.
p_threshold:	p value cutoff for selecting differentially expressed genes.

Value

deg: a list of differentially expressed genes

Examples

vgam_perGene	vgam_perGene determines if a gene is differentially expressed along
	the re-ordered single-cell trajectories using vgam

Description

vgam_perGene determines if a gene is differentially expressed along the re-ordered single-cell trajectories using vgam

Usage

```
vgam_perGene(expr, order, min_expr)
```

Arguments

expr:	a vector of one gene's expression in different cells (ie. rpkm, TPM, fpkm)
order:	a vector of re-ordered cell IDs
<pre>min_expr:</pre>	a numeric value indicating the minimum TPM value for a gene to be considered as expressed. Default is 1.

Value

pval: p value of significance of the gene being differentially expressed

Examples

p_val <- vgam_perGene(expr,order,min_expr=1)</pre>

Index

build_network,6

color_code_node_2,7

find_optimal_cluster_number, 8

heatmap_nbor,9

 $landmark_designation, 10$

Mpath-package, 2

nbor_order, 11

pseudotimePlotByGenes, 12

QC_gene, 13

SC_anova, 13 SC_hc, 14 SC_hc_colorCode, 15

trim_net,16

vgam_deg, 16 vgam_perGene, 17