Supplementary Fig. 1

Supplementary Fig. 1. FLCN is a new client of Hsp90. Related to Fig. 1.

- a) HEK293 cells were treated with 2µM of the Hsp90 inhibitor SNX–2112 for the indicated times. FLCN protein was detected by immunoblotting.
- b) HEK293 cells were treated with 3µM of the Hsp90 inhibitor PU–H71 for the indicated times. FLCN was detected by immunoblotting.
- c) 100nM treatment of HEK293 cells with the lysosome inhibitor bafilomycin (Baf) for 8 or 16 hr in presence or absence of 1µM ganetespib (GB).

Supplementary Fig. 2

Supplementary Fig. 2. FNIP1 facilitates FLCN binding to the Hsp90 chaperone. Related to Fig. 2-3.

- a) Empty vector (EV), HA-FNIP1 or HA-FNIP2 constructs transiently expressed and isolated from HEK293 cells. Interaction of FNIP1 and FNIP2 with the molecular chaperones, co-chaperones and indicated client proteins were assessed by immunoblotting.
- b) 100ng of the purified FNIP1-D-His₆ and 50ng Hsp90α-HA protein samples were resolved on the SDS-PAGE gel and stained with Coomassie stain.
- c) Western blot analysis of the purified proteins from (A).
- d) FNIP1-D-His₆:HSP90α-HA binding measured by fluorescence anisotropy in the presence and absence of different adenosine nucleotides.

Supplementary Fig. 3 a **FLCN** p-GR (S211) GR ERα Ulk1 **B-Raf** Cdk4 20 18 16 14 12 OD units FLCN p-GR (S211) 10 GR 8 ERα Ulk1 6 B-Raf Cdk4 4 2 Т st strapping ٥ SIFNIPUR SIFNIPAR SiFNIP112 SiFNIP112 SIFNIPUL SIFNIP siFMP2 SIFNIP siFulP2 siFNIP2 SIFNIP2 siFNIP1 SIFNIP siFNIP1 siFNIP2 SiFNIP1 siFNIP1 SiNT SiNT SiNT SINT SINT SINT SINT p–GR (S211) p-Src (Y416) v-Src FLCN Ulk1 GR B-Raf b 30 25 L *** 20 Ι **** **OD** units *** *** 15 FLCN Ulk1 p-GR (S211) 10 GR B-Raf p-Src (Y416) 5 v-Src 0 FNIP1 FNIP1 FHIP2 FHIP FHIP2 FHIP2 FHIP2 FNIP1 FHIP2 FHIP2 FHIP \$ FHIP ¢ ¢ \$ \$ FMIP1 FMIP2 ¢ Ş

Supplementary Fig. 3 . FNIP co-chaperones facilitate chaperoning of the clients. Related to Fig. 4.

- a) Effect of siRNA knockdown of *FNIP1* and *FNIP2* on Hsp90 clients. Stability and activity of the indicated Hsp90 clients were assessed by immunoblotting. Densitometry (optical density, OD) of the Western blot in Fig. 3a are represented as mean ± S.D. (*p < 0.05, **p < 0.005, ***p < 0.00001).
- b) Transient overexpression of cMyc-tagged FNIP1 or FNIP2 in HEK293 cells and their impact on levels of Hsp90 clients was assessed by immunoblotting in Fig. 3b. Densitometry (OD) of the Western blot in Fig. 3a are represented as mean ± S.D. (*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00001).</p>

Supplementary Fig. 4. FNIP co-chaperones inhibit Hsp90 chaperone cycle and facilitate chaperoning of the clients. Related to Fig. 4-5.

- a) PC3 cells were transiently transfected with Hsp90α–HA and HEK293 cells were transiently transfected with HA-FNIP1, HA-FNIP1-D, or HA-FNIP2 constructs. Hsp90α-HA, HA-FNIP1, HA-FNIP1-D, and HA-FNIP2 were immunoprecipitated, competed with the relevant peptides and proteins were detected by immunoblotting.
- b) Inorganic phosphate (P_i) standard curve at 1 hr. The x-axis shows μ M of P_i per assay and the y-axis shows absorbance at 565nm. Mean ± S.D. from values obtained in three independent experiments.
- c) ATPase activity of Hsp90α–HA with or without HA-FNIP1, HA-FNIP1-D, or HA-FNIP2 expressed in mmol P_i per mol Hsp90α per minute. Mean ± S.D. from values obtained in three independent experiments with ***p < 0.0005.</p>
- d) Molarity of the proteins in the ATPase assay, ratio to Hsp90, and total quantity of protein added.
- e) ATPase activity of Hsp90 α –HA with or without 10 μ M GB expressed in mmol P_i per mol Hsp90 α per minute. Mean ± S.D. from values obtained in three independent experiments with ****p < 0.0001.
- f) 50ng of Lst4-GST and yHsp90-His6 were resolved on the SDS-PAGE gel and stained with Coomassie stain.
- g) In vitro ATPase activity of the yHsp90-His₆ with indicated amounts Lst4-GST. All the data represent mean ± S.D.

Supplementary Fig. 5. FNIPs compete with the Aha1 co-chaperone for binding to Hsp90. Related to Fig. 6.

- a) Hsp90α with and without HA-FNIP1 and HA-FNIP2 proteins from Figure 4B. Western blotting validates overexpression of FNIPs compared to endogenous levels of FNIP1 and FNIP2.
- b) Inorganic phosphate (Pi) standard curve at 30 min and
- c) 1 hour. The x-axis shows μM of Pi per assay and the y-axis shows absorbance at 565nm. Mean ± S.D. from values obtained in three independent experiments.
- d) Inhibition of Hsp90α–HA ATPase activity 30 min after the addition of HA-FNIP1 or HA-FNIP2 and subsequent stimulation by Aha1–FLAG after an additional 30 min expressed in mmol Pi per mol Hsp90α per min. Mean ± S.D. from three independent experiments with **p < 0.005, ****p < 0.0001.</p>
- e) Molarity of the protein in the ATPase assay, ratio to Hsp90, and total quantity of protein added are listed.
- f) HEK293 cells were transiently transfected with Aha1-FLAG. Following immunoprecipitation, protein was competed with peptide and detected by immunoblotting with anti-FLAG antibody.
- g) Indicated amounts of BSA were resolved on the SDS-PAGE gel and stained with Coomassie stain.
- h) FNIP1-D-His₆ was attached to Ni-NTA agarose and then incubated with Hsp90α. Ni-NTA agarose was then washed and incubated with the indicated amounts of BSA.
- i) Aha1-FLAG attached to anti-FLAG M2 affinity gel was incubated with Hsp90α initially and then washed and incubated with indicated amounts of BSA.

Supplementary Fig. 6. Full original immunoblots and gel images.

Figure 1c continued

Figure 1d

Hsp70 Inhibitor (JG-98) Time (hr) 2 4 8 16 kDa 98 **FLCN** 64 soluble **50** Hsp90 98· soluble GAPDH 36 soluble 98 FLCN 64 soluble

Figure 1e

Figure 1f

Figure 1g

Figure 1h

Figure 2a

Figure 2b

- 28

Figure 4a

Figure 4c

Figure 5a

Figure 5d

Figure 6a

Figure 6b

Figure 6d

Figure 6e

Figure 7b

Figure 7d

Figure 7f

Figure 7g

Figure 9a

Figure 9f

Figure 10a-d

Figure 10e

Figure 10f

Supp. Figure 1a

Supp. Figure 1b

Supp. Figure 1a

Supp. Figure 2a

Supp. Figure 4a

Supp. Figure 5a

Supp. Figure 5h

÷

÷

÷

÷

Hsp90α

Supp. Figure 5f

Supp. Figure 5i

Protein	MW	Protein Score	C.I.%	Total Ion Score	C.I.%	Peptides	Accession Number
Spliceosomal protein SAP 155	145723	158	100	124	100	HFWQHR VLPPPAGYVPIR MTPPIKDLLPR RATVNTFGYIAK LDDLVRPYVHK DTPGHOSGWAETPR IVDDLKDEAEQYRK AGELKVVNGAAASQPPSK IWDPTPSHTPAGAATPGR EWMRICFELLELK TPDPKMNVRTYMDVMR DYIYAVTPLLEDALMDR LLVDVDESTLSPEEQKER NRPLSDEELDAMFPEGYK EDEYKKHRRTMISPER IYNSIYIGSQDALIAHYPR AIGYLIPLMDAEYANYYTR IYNDDKNTYIRYEDYIL KLTATPTPLGGMTGFHMQTEDR KPGYHAPWALLNDIPQSTEQYDPFAEHRPPK EIQGKKAALDEAQGVGLDSTGYYDQEIYGGSDSR	gi 4033735
Splicing factor 3b, subunit 3, 130kDa	135432	N/A	N/A	24	88	FLAVGLVDNTVR	gi 46362557
Heat shock protein HSP 90- alpha	98180	89	100	83	100	VILHLKEDQTEYLEER HSQFIGYPITLFVEKER	gi 153792590
Heat shock 70 kDa protein 1A/1B	70009	222	100	173	100	DEFEHK LLQDFFNGR DAGVIAGLNVLR LVNHFVEEFKR LLQDFFNGRDLNK ATAGDTHLGGEDFDNR IINEPTAAAIAYGLDR NQVALNPQNTVFDAKR LDKAQIHDLVLVGGSTR RLIGRKFGDPVVQSDMK GRLSKEEIERMVQEAEK STGKANKITINDKGRLSK QTQIFTTYSDNQPGVLIQVYEGER TLSSSTQASLEIDSLFEGIDFYTSITR MKEIAEAYLGYPVTNAVITVPAYFNDSQR VEIIANDQGNRTTPSYVAFTDTERLIGDAAK	gi 167466173
Chaperonin containing TCP1, subunit 8 (theta)	59440	171	100	156	100	GYEIACRK FAEAFEAIPR HFSGLEEAVYR LFVTNDAATILR HEKEDGAISTIVLR MALHVPKAPGFAQMLK VDQIIMAKPAGGFKPPSGKK YNIMLVRLNSKWDLRR VADMALHYANKYNIMLVR TAEELMNFSKGEENLMDAQVK ELAQTTRTAYGPNGMNKMVINHLEK RLVPGGGATEIELAKQITSYGETCPGLEQYAIKK	gi 119630329

Supplementary Table 1. Cellular proteins associated with FLCN.

T-complex protein 1 subunit beta	57424	94	100	27	92	VPDHHPC LIEEVMIGEDK GATQQILDEAER LLTHHKDHFTK QDLMNIAGTTLSSK TPGKEAVAMESYAKALK RQVLLSAAEAAEVILR EALLSSAVDHGSDEVKFR IHPQTIIAGWREATKAAR LALVTGGEIASTFDHPELVK VDSTAKVAEIEHAEKEKMKEK EGTIGDMAILGITESFQVKR VQDDEVGDGTTSVTVLAAELLR ALKMLPTIIADNAGYDSADLVAQLR RIENAKILIANTGMDTDKIKIFGSR	gi 197692147
T-complex protein 1 subunit eta	59329	N/A	N/A	60	100	QVKPYVEEGLHPQIIIR	gi 5453607
T-complex protein 1 subunit delta	57888	N/A	N/A	47	100	ALIAGGGAPEIELALR	gi 38455427
Activator of 90 kDa heat shock protein ATPase homolog	38250	192	100	131	100	WGEGDPR WIVEER TQARPVGVK GIPAPEERTR LDGEASINNRK NGETELCMEGR LIFFYEWSVK YYFEGIKQTFGYGAR VFTTQELVQAFTHAPATLEADRGGK ADATNVNNWHWTERDASNWSTDKLK	gi 6912280
E3 ubiquitin-protein ligase CHIP	34834	119	100	107	100	LIAAERER VGHFDPVTR NPLVAVYYTNR LNFGDDIPSALR RIHQESELHSYLSR ISFELMREPCITPSGITYDR	giļ56181387
Ribosomal protein L10	25067	68	96	35	99	GAFGKPQGTVAR VRLHPFHVIR ICANKYMVKSCGK INKMLSCAGADRLQTGMR SRFCRGVPDAKIRIFDLGR LQTGMRGAFGKPQGTVARVHIGQVIMSIRTK	gi 119593144

Supplementary Table 2. siRNA sequences.

Name	Sequences
FNIP1-1	CCCAGGAAUUGUGCGGAAA
FNIP1-2	AAGCAUAACUUGUCUCCAA
FNIP1-3	GCAAAGACUCAUCCAUAUA
FNIP1-4	GCACAAAUACUCCUUUAAU
FNIP2-1	GGACAGUGGCAUUGCUCGA
FNIP2-2	AUAAAGAGGCACCGCAAGA
FNIP2-3	GAAAGAAUUAGGUGUCGUA
FNIP2-4	CCUCGUGGCUGGUGCGAAU
NON-TARGETING POOL-1	UGGUUUACAUGUCGACUAA
NON-TARGETING POOL-2	UGGUUUACAUGUUGUGUGA
NON-TARGETING POOL-3	UGGUUUACAUGUUUUCUGA
NON-TARGETING POOL-4	UGGUUUACAUGUUUUCCUA

Supplementary Table 3. Primer sequences. Restriction sites are highlighted in green. Epitope sequences are highlighted in blue.

Primer	Sequence
FLAG-Hsp90-N-BamHI-F	TATGCGGGATCCATGGATTACAAGGATGA
	CGACGATAAGGGACCTGAGGAAACCCAGA
	CCCAAGAC
FLAG–Hsp90–N–Xhol–R	CTCGGTCTCGAGTTACACAAAAAGAGTAAT
	GGGATATCCAATAAACTGAGA
FLAG–Hsp90–M–BamHI–F	TATGCGGGATCCATGGATTACAAGGATGA
	CGACGATAAGGGAGATCAAGAAGAGCTCA
	ACAAAACA
FLAG–Hsp90–M–Xhol–R	CTCGGTCTCGAGTTATCTTAGGGCTTGAG
	CTTTCATGATTCTCTCCATGTTT
FLAG-Hsp90-C-BamHI-F	TATGCGGGATCCATGGATTACAAGGATGA
	CGACGATAAGGGAGACAACTCAACAATGG
	GTTACATG
FLAG–Hsp90–C–Xhol–R	CTCGGTCTCGAGTTAGTCTACTTCTTCCAT
	GCGTGATGTGTCGTCATCTCC
	CTCGTACACTAGTATGGACTACAAGGACG
	ACGATGACAAGAATGCCATCGTGGCTCTC
FLCN-Flag-Spe1	TGCC
	CTAAGGACTCGAGTCAGTTCCGAGACTCC
FLCN-R-Xho1	GAGGCTGTG
Fnip1–Nhel–F	TATGCGCTAGCGCCCCTACGCTGTTCCAG
	AAGCTCT
Fnip1–Xhol–R	CTCGGTCTCGAGTTAAAGGAGTATTTGTGC
	AACATATGGAG
Fnip2–Nhel–F	TATGCGCTAGCGCCCCGACCCTGCTCCAG
	AAGCTCTTC
Fnip2–Xhol–R	CTCGGTCTCGAGTTATAAGAGTATTTGAGC
	CACATAAGGA
Fnip1-Notl-F	TATGCGCGGCCGCGCCCCTACGCTGTTCC
	AGAAGCTCT
Fnip2-NotI-F	TATGCGCGGCCGCGCCCCGACCCTGCTC
	CAGAAGCTCTTC
Fnip1–KpnI–FLAG–F	TATGCGGTACCATGGATTACAAGGATGAC
	GATGACAAGGGATCCGCCCCTACGCTGTT
	CCAGAAGCTCT
Fnip2–KpnI–FLAG–F	TATGCGGTACCATGGATTACAAGGATGAC
	GATGACAAGGGATCCGCCCCGACCCTGCT
	CCAGAAGCTCT
Fnip1–Spel–cMyc–F	TATGCACTAGTATGGAACAAAAGTTAATCT
	CCGAAGAAGATTTAGCCCCTACGCTGTTC
	CAGAAGCTCTT
Fnip2–Spel–cMyc–F	TATGCACTAGTATGGAACAAAAGTTAATCT
	CCGAAGAAGATTTAGCCCCGACCCTGCTC
	CAGAAGCTCTTCAA