Supplementary information

Exploring Ag(111) Substrate for Epitaxially Growing Monolayer Stanene:

A First-Principles Study

Junfeng Gao, Gang Zhang*^(a), Yong-Wei Zhang*^(b)

^(a) E-mail: <u>zhangg@ihpc.a-star.edu.sg</u>; ^(b) <u>zhangyw@ihpc.a-star.edu.sg</u>

Institute of High Performance Computing, A*STAR, Singapore 138632

Figure S1. Optimized structure of the supercell containing a $(4 \times 4)R0^{\circ}$ stanene on a $(\sqrt{43} \times \sqrt{43})R7.589^{\circ} \text{ Ag}(111)$, with dimensions of 19.229 Å × 19.229 Å × 25.000 Å. The bucking pattern of this large supercell can be recognized as a mixture of S1 (blue circle), S2 (red circle) and S3 (purple circle) structures (see Fig 1 in the main text). The binding energy between this stanene structure and Ag (111) surface is -0.058 eVÅ⁻², and the height of the low-level Sn atoms (black balls) to Ag(111) surface is about 2.419 Å. Both the binding energy E_b and the average height \overline{d} are between those of S1(S2) and S3. The highest buckling point of this stanene structure is 2.174 Å.

Figure S2. The K-mesh test for the structural relaxation of $(\sqrt{7} \times \sqrt{7})R19.107^{\circ}$ stanene on $(\sqrt{19} \times \sqrt{19})R23.413^{\circ}$ Ag(111) supercell. It is found the $(2\times2\times1)$ k-mesh used in our calculations can give good energy convergence for structural relaxations; the order of stability of S1-S4 is the same as that from calculations adopted the $(6\times6\times1)$ k-mesh.