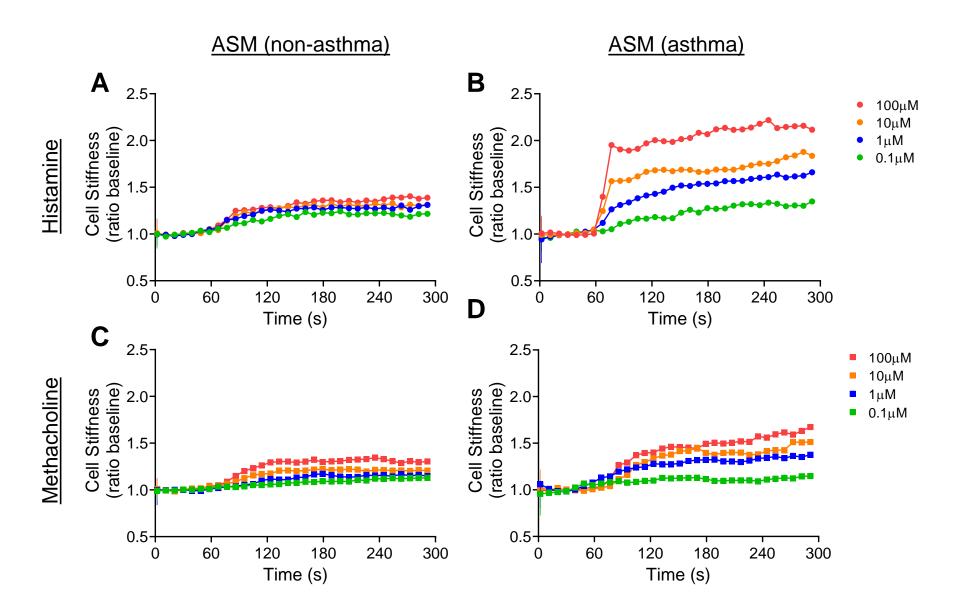
Supplementary Tables for Online Repository

25 69 53 40	M M F	Unknown Unknown	Multiple trauma, anoxia
69 53	М	Unknown	
53			Intracranial bleed
	F		
40		White, not Hispanic	Intracranial bleed
-	М	White, not Hispanic	Drug overdose
61	М	Black, not Hispanic	Intracranial bleed
49	М	White, not Hispanic	Intracranial bleed
•			•
42	М	Unknown	Unknown
44	F	Unknown	Asthma attack
45	М	White, not Hispanic	Intracranial bleed
48	F	Black, not Hispanic	Intracranial bleed
51	F	Black, unknown	Intracranial bleed
11	М	White, not Hispanic	Anoxia
4 4 5	12 14 15 18 51	2 M 44 F 5 M 88 F 51 F	I2MUnknownI4FUnknownI5MWhite, not HispanicI8FBlack, not HispanicI1FBlack, unknown

Table E1: Characteristics of donor lungs used for cell traction force measurements

Notes:


Human airway smooth muscle (ASM) cells used for cell traction force measurements were obtained from the University of Chicago, through the Gift of Hope Organ and Tissue Donor Network.

Donor	Age	Gender	Race and Ethnicity	Cause of Death		
Non-asthm	Non-asthma					
13	16	F	White, not Hispanic	Head trauma		
14	37	М	Black, not Hispanic	Intracranial bleed		
15	19	М	Black, not Hispanic	Closed head injury		
16	19	F	Black, not Hispanic	Head trauma		
17	55	F	Hispanic	Hypertensive bleed		
18	55	F	White, not Hispanic	CNS tumor		
Asthma						
19	13	М	White, not Hispanic	Asthma attack, anoxia		
20	44	М	Hispanic	Asthma attack, anoxia		
21	15	F	Hispanic	Asthma attack, anoxia		
22	25	F	White, not Hispanic	Anoxia		
23	38	М	White, not Hispanic	Asthma attack, anoxia		
24	9	М	White, not Hispanic	Asthma attack		

 Table E2: Characteristics of donor lungs used for cell stiffness measurements

Notes:

Human ASM cells used for cell stiffness measurements were obtained from the University of Pennsylvania. Lungs were procured through the National Disease Research Interchange and the International Institute for the Advancement of Medicine.

Supplementary Material for Online Repository

Materials and Methods

Materials

Unless otherwise noted, all reagents were obtained from Sigma-Aldrich with the exception of DMEM-Ham's F-12 (1:1) which was purchased from GIBCO. The synthetic arginine-glycine-aspartic acid (RGD) containing peptide was purchased from American Peptide Company.

ASM cell culture and characterization

Human ASM cells were prepared from donor lungs unsuitable for transplantation in accordance with of the respective Institutional Review Boards at the University of Chicago and the University of Pennsylvania. Because the availability of large numbers of early passage primary ASM cells from donor lungs is a challenge, and because the propagation of cells from distal airways often necessitate greater numbers of passages in culture, here we harvested cells from the proximal airways (first through third order bronchi) as described.^{E1} Cells were maintained in serum-free media for 24 h at 37°C in humidified air containing 5% CO₂ prior to study. These conditions have been optimized for seeding cultured cells on collagen matrix and for assessing their mechanical properties.^{E1-E5}

Fourier transform traction microscopy

Briefly, cells were plated sparsely on collagen-coated elastic gel blocks precisely tuned to mimic a (patho)physiological range of airway wall rigidity (Young's modulus from 1 kPa to 8 kPa),^{E5} and allowed to adhere and stabilize for 24 h. The contractile stress arising at the interface between each adherent cell and its substrate was measured with traction microscopy,^{E4} and the computed traction field was used to obtain net contractile moment, which is a scalar measure of the cell's contractile amplitude. Net contractile moment is expressed in units of pico-Newton meters (pNm).

Magnetic twisting cytometry

Dynamic increases in cell stiffness to bronchoconstrictive agonists were measured as an indicator of the single-cell contraction of isolated human ASM cells as we have previously described.^{E1-E3}

In brief, RGD-coated ferrimagnetic microbeads (4.5 µm in diameter) bound to the cytoskeleton through cell surface integrin receptors were magnetized horizontally and then twisted in a vertically aligned homogeneous magnetic field that was varying sinusoidally in time. This sinusoidal twisting magnetic field caused both a rotation and a pivoting displacement of the bead: as the bead moves, the cell develops internal stresses which in turn resist bead motions.^{E3} Lateral bead displacements in response to the resulting oscillatory torque were detected with a spatial resolution of ~5 nm, and the ratio of specific torque to bead displacements was computed and expressed here as the cell stiffness in units of Pascal per nm (Pa/nm).

Statistical Analysis

For cell traction force measurements, we used nested design analysis to control for random effects from repeated measurements of multiple cells in the same subject, and to increase the power.^{E6} To satisfy the normal distribution assumptions associated with the Analysis of Variance (ANOVA), cell traction data were converted to log scale prior to analyses. Unless otherwise stated, we used Student's *t*-test and ANOVA with adjusting for multiple comparisons by applying Bonferroni's methods. All analyses were performed using SAS V.9.2 (SAS Institute Inc., Cary, NC), and 2-sided *P*-values less than 0.05 were considered significant.

References

- E1. Deshpande DA, Wang WC, Mcllmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. *Nat Med* 2010;16:1299-1304.
- E2. An SS, Fabry B, Trepat X, Wang N, Fredberg JJ. Do biophysical properties of the airway smooth muscle in culture predict airway hyperresponsiveness? *Am J Respir Cell Mol Biol* 2006;35:55-64.
- E3. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ. Scaling the microrheology of living cells. *Phys Rev Lett* 2001;87:148102.
- E4. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ. Traction fields, moments, and strain energy that cells exert on their surroundings. *Am J Physiol* 2002;282:C595-C605.
- E5. An SS, Kim J, Ahn K, Trepat X, Drake KJ, Kumar S, Ling G, Purington C, Rangasamy T, Kensler TW, Mitzner W, Fredberg JJ, Biswal S. Cell stiffness, contractile stress and the role of extracellular matrix. *Biochem Biophys Res Commun* 2009;382:697-703.
- E6. Krzywinski M, Altman N, Blainey P. Points of significance: nested designs. *Nat Methods*. 2014;11:977-978.

Figure Legends

Figure E1. Cell stiffening responses to histamine (**A** and **B**) and methacholine (**C** and **D**) of ASM derived from non-asthma (*left*) and asthma (*right*) lung donors measured by magnetic twisting cytometry. For each individual ASM cell, baseline stiffness was measured for the first 60 s, and after drug addition stiffness was measured continuously for the next 240 s. For each cell, stiffness was normalized to its baseline stiffness before the agonist stimulation. Data are presented as mean \pm SE (n = 68-283 individual cell measurements for each dose of the agonists).