

Supplementary Figure 1: Quantile-Quantile (Q-Q) plots of observed and expected χ^2 values of association between SNP genotype and risk of multiple myeloma after imputation. a) UK, b) Sweden/Norway, c) Germany, d) Iceland, e) USA and f) Netherlands. The blue line represents the null hypothesis of no true association.

-1.0

GG

AG rs2790457 genotype AA

Supplementary Figure 2: eQTL boxplots. Relationship between rs2790457 (10p12.1) genotype and *WAC* expression, and rs6066835 (20q13.13) and *PREX1* in CD138+ selected plasma cells from 658 German, 183 UK and 608 US myeloma patients. The central line in each box indicates the median; the bottom and top lines of the box are the 25th and 75th percentiles; whiskers extend 1.5 times from the 25th and 75th percentiles.

150.50 150.55 150.60 150.65 150.70 150.75 150.80 150.85 150.90 150.95 151.00 151.05 151.10 151.15 151.20 151.25 151.30 151.35 151.40 151.45 Chromosome 7, position (Mb)

Chromosome 8, position (Mb)

Supplementary Figure 3: Definition of topological domains (TADs) at risk loci and patterns of local chromatin interactions in GM12878¹.

(i) The upper panel shows heat map of chromatin interactions. TADs at each locus (double-red line) were inferred by the Arrowhead method and are superimposed. (ii) Middle panel denotes virtual 4C experiment defined by Hi-C intensity according to viewpoint based on sentinel SNP. The green box denotes a 5Kb (masked) region flanking the sentinel SNP. (iii) Lower panel shows DNase, CTCF, H3K27me3, H3K4me1, H3K4me3 and H3K36me3 tracks for GM12878.

Supplementary Figure 4: Identification of individuals of non-European ancestry in cases and controls. (a) UK-GWAS (Thresholds; 0.0025<PC1<0.0076, 0.0724<PC2<0.0804), (b) German-GWAS (Thresholds; 0.0033<PC1<0.0079, 0.0716<PC2<0.0803), (c) USA-GWAS (Thresholds; 0.0096<PC1<0.0129, 0.0791<PC2<0.0829) and (d) Netherlands-GWAS (Thresholds; -8.8<PC1<-1.7, -3.5<PC2<3.1). The first two principal components of the analysis are plotted. HapMap CEU individuals are plotted in blue; CHB individuals are plotted in indigo; JPN are plotted in cyan; YRI individuals are plotted in yellow. Cases are plotted in red, controls plotted in green, and have been removed if observed here to be of non-European ancestry.

	UK Cases	Controls	Sweden/No Cases	rway Controls	Germany Cases	Controls	Netherlands Cases	s Controls	USA Cases	Controls	Iceland Cases	Controls
Pre-QC	2,329	5,199			1,512	2,107	608	2669	1,076	2,234		
Sex discrepancy Call rate fail Heterozygosity rate Related Individuals Non-European Ancestary	10 1 NA 2 34	0 0 NA 2 0			1 0 NA 0 3	0 0 NA 0 0	0 2 7 0 44	0 0 0 0	0 0 9 1 286	0 4 2 0 369		
Post-QC	2,282	5,197	1,714	10,391	1,508	2,107	555	2669	780	1,857	480	212,164

Supplementary Table 1: Details of the quality control filters applied to each GWAS. Samples were excluded due to call rate (<95% or failed genotyping), ethnicity (principle components analysis or other samples reported to be not of white, European descent), relatedness (any individuals found to be duplicated or related within or between data sets through IBS) or sex discrepancy. Sweden/Norway and Iceland: These studies have been previously reported in their entirety with full QC details².

	UK	Sweden/Norway	Germany	Netherlands	USA	Iceland
Pre-QC	409,429		401,405	646,124	296,998	
Call rate fail	997		113	6,523	4	
HWE fail	7		0	18,104	171	
MAF < 0.01	3		1	0	9151	
Post-QC	408,422		401,291	621,497	287,672	
Imputed (filtered)	8,517,071	7,182,761	8,282,831	8,628,799	8,085,846	10,291,845

Supplementary Table 2: Details of the quality control filters applied to each GWAS. Genotyped SNPs with a call rate <95% were excluded as were those with a MAF<0.01 or displaying significant deviation from Hardy-Weinberg equilibrium (*i.e.* $P < 10^{-5}$). Imputed SNPs with information score <0.8 and MAF <0.005 were excluded. Sweden/Norway and Iceland: These studies have been previously reported in their entirety with full QC details².

Locus	Published SNP	Strongest signal (current GWAS)	Position (hg19, bp)	Risk Allele	Literature OR (95% CI)	Literature <i>P</i> value	Current GWAS OR (95% CI)	Current GWAS <i>P</i> value	Reference
2p23.3	rs6746082	rs7577599	25659244 25613146	A T	1.29 (1.17-1.42) r ² = 0.483	1.22×10^{-7} D' = 0.713	1.20 (1.15-1.26) 1.24 (1.18-1.30)	$\begin{array}{c} 2.28 \times 10^{-14} \\ 1.24 \times 10^{-16} \end{array}$	3
3p22.1	rs1052501	rs6599192	41925398 41992408	C G	1.32 (1.20-1.45) r ² = 0.309	7.47×10^{-9} D' = 0.643	1.25 (1.18-1.31) 1.26 (1.20-1.33)	8.19×10^{-17} 8.75×10^{-18}	3
7p15.3	rs4487645	rs4487645	21938240	С	1.38 (1.28-1.50)	3.33×10^{-15}	1.24 (1.19-1.30)	5.30×10^{-25}	3
3q26.2	rs10936599	rs10936600	169492101 169514585	C A	1.26 (1.18-1.33) r ² = 1	8.70 × 10 ⁻¹⁴ D' = 1	1.20 (1.14-1.25) 1.20 (1.15-1.26)	9.35×10^{-15} 5.94×10^{-15}	4
6p21.3	rs2285803	rs3132535	31107258 31116526	T A	1.19 (1.13-1.26) r ² = 0.94	9.67×10^{-11} D' = 0.98	1.19 (1.14-1.24) 1.20 (1.15-1.25)	$\begin{array}{c} 1.04 \times 10^{-16} \\ 2.97 \times 10^{-17} \end{array}$	4
17p11.2	rs4273077	rs34562254	16849139 16842991	G A	1.26 (1.16-1.36) r ² = 0.904	7.67 × 10 ⁻⁹ D' = 0.958	1.29 (1.21-1.37) 1.30 (1.23-1.39)	7.35×10^{-15} 3.63×10^{-17}	4
22q13.1	rs877529	rs139402	39542292 39546145	A C	1.23 (1.17-1.29) r ² = 1	7.63 × 10 ⁻¹⁶ D' = 1	1.23 (1.19-1.28) 1.23 (1.19-1.28)	6.07×10^{-26} 4.98×10^{-26}	4
5q15	rs56219066	rs1423269	95242931 95255724	T A	1.25 (1.16-1.34) r ² = 0.962	9.6×10^{-10} D' = 0.981	1.16 (1.10-1.22) 1.17 (1.12-1.22)	8.06×10^{-8} 1.57×10^{-11}	5
22q13	rs138740	rs138747	35699582 35700488	C A	1.18 (1.11-1.25) r ² = 0.955	5.7 × 10 ⁻⁸ D' = 0.983	1.11 (1.07-1.16) 1.21 (1.13-1.30)	2.31×10^{-7} 2.58×10^{-8}	5

Supplementary Table 3: Strongest association signals from previously published risk loci discovered in European populations³⁻⁵. Shown for each region are the published SNP, the most associated variant within a 500kb window in the imputation and the odds ratio and *P* values associated with each, along with the linkage disequilibrium metrics between the SNPs. Meta-analysis for current GWAS was undertaken using the inverse-variance approach under a fixed effects model.

SNP Locus Position (bp, Allele A Allele B (Risk	hg19) Allele)	rs34229995 6p22.3 15,244,018 C G	rs9372120 6q21 106,667,535 T G	rs7781265 7q36.1 150,950,940 C T	rs1948915 8q24.21 128,222,421 T C	rs2811710 9p21.3 21,991,923 A G	rs2790457 10p12.1 28,856,819 A G	rs7193541 16q23.1 74,664,743 C T	rs6066835 20q13.13 47,355,009 T C
UK	Cases RAF	0.024	0.236	0.128	0.332	0.666	0.751	0.628	0.100
	Controls RAF	0.019	0.211	0.117	0.319	0.634	0.733	0.584	0.083
	OR	1.28	1.16	1.11	1.06	1.16	1.10	1.20	1.25
	<i>P</i> value	0.0525	6.72×10^{-4}	0.0578	0.109	1.24×10^{-4}	0.0149	5.97 × 10 ⁻⁷	3.83×10^{-4}
Sweden/ Norway	Cases RAF Controls RAF OR <i>P</i> value	0.045 0.033 1.44 4.37×10^{-4}	0.243 0.217 1.22 9.96 × 10 ⁻⁶	Info<0.8	0.386 0.363 1.12 2.97 × 10 ⁻³	0.681 0.660 1.14 1.38×10^{-3}	0.750 0.735 1.11 0.0160	0.598 0.572 1.07 0.0612	0.097 0.075 1.38 6.20 × 10 ⁻⁶
Germany	Cases RAF	0.039	0.226	0.144	0.357	0.678	0.757	0.596	0.095
	Controls RAF	0.028	0.207	0.118	0.331	0.654	0.728	0.590	0.077
	OR	1.49	1.18	1.33	1.22	1.15	1.15	1.02	1.24
	<i>P</i> value	9.03×10^{-3}	0.0124	3.22×10^{-4}	3.13×10^{-4}	0.0119	0.0224	0.645	0.0240
Iceland	Cases RAF Controls RAF OR <i>P</i> value	1.32 0.0110	1.19 0.0501	1.14 0.190	1.21 0.0153	1.06 0.440	1.19 0.0402	1.14 0.0907	1.08 0.535
USA	Cases RAF	0.036	0.239	0.159	0.362	0.669	0.761	0.604	0.105
	Controls RAF	0.023	0.202	0.120	0.313	0.637	0.732	0.584	0.082
	OR	1.61	1.25	1.45	1.25	1.16	1.17	1.09	1.33
	<i>P</i> value	0.0110	2.46 $\times 10^{-3}$	6.56×10^{-5}	5.35×10^{-4}	0.0258	0.0232	0.166	7.11×10^{-3}
Netherlands	Cases RAF	0.031	0.239	0.137	0.363	0.682	0.749	0.616	0.081
	Controls RAF	0.024	0.204	0.124	0.329	0.658	0.742	0.570	0.085
	OR	1.32	1.23	1.12	1.17	1.12	1.04	1.21	0.95
	<i>P</i> value	0.192	9.45×10^{-3}	0.240	0.0258	0.113	0.620	4.36×10^{-3}	0.687
Meta	OR	1.40	1.20	1.20	1.14	1.14	1.12	1.12	1.24
	(95% CI)	(1.25-1.58)	(1.14-1.26)	(1.12-1.29)	(1.10-1.19)	(1.09-1.19)	(1.07-1.17)	(1.08-1.17)	(1.16-1.33)
	<i>P</i> value	1.76 × 10 ⁻⁸	8.72×10^{-14}	1.82 × 10 ⁻⁷	3.14×10^{-10}	6.50 × 10 ⁻¹⁰	8.44×10^{-7}	1.14 × 10 ⁻⁸	1.16 × 10 ⁻⁹

Supplementary Table 4: Summary statistics for novel variants showing an association with multiple myeloma risk in the GWAS meta-analysis at $P < 1.0 \times 10^{-6}$. Showing SNPs which were genome-wide significant after replication. Odds ratios derived with respect to the risk allele. Cases RAF, risk allele frequency in discovery cases. Controls RAF, risk allele frequency in discovery controls. Shown are discovery association P values for individual studies (logistic regression) and from meta-analysis of the six GWAS datasets (inverse-variance approach under a fixed effects model).

SNP Locus Position (bp, Allele A Allele B (Risk	hg19) : Allele)	rs78311596 1p13.2 113,300,945 A T	rs72665486 4q22.1 91,913,730 T G	rs1034447 6q27 164,613,457 C T	rs17507636 7q22.3 106,291,118 T C	rs28571765 8q11.23 55,449,281 C T	rs76601148 13q13.3 36,746,056 A G	rs8058578 16p11.2 30,726,248 C T	rs6071887 20q12 38,621,456 G A
UK	Cases RAF	0.029	0.882	0.163	0.760	0.808	0.049	0.280	0.258
	Controls RAF	0.022	0.874	0.148	0.745	0.794	0.041	0.255	0.238
	OR	1.34	1.07	1.13	1.08	1.09	1.07	1.14	1.11
	<i>P</i> value	0.0138	0.180	0.0148	0.0476	0.0532	0.0152	1.34 × 10 ⁻³	8.42×10^{-3}
Sweden/ Norway	Cases RAF Controls RAF OR <i>P</i> value	MAF<0.005	0.907 0.886 1.25 2.14 × 10 ⁻⁴	0.158 0.127 1.27 1.40 × 10 ⁻⁵	0.778 0.765 1.09 0.0436	0.797 0.773 1.13 8.80 × 10 ⁻³	0.051 0.038 1.39 6.57 × 10 ⁻⁴	0.283 0.261 1.11 0.0126	0.225 0.208 1.11 0.0199
Germany	Cases RAF	0.020	0.907	0.142	0.745	0.825	0.039	0.281	0.220
	Controls RAF	0.016	0.883	0.138	0.714	0.812	0.033	0.261	0.213
	OR	1.449	1.36112	1.0950	1.13882	1.09694	1.4424	1.0979	1.06395
	<i>P</i> value	0.0733	2.9 × 10 ⁻⁴	0.238	0.0281	0.175	0.0111	0.115	0.331
Iceland	Cases RAF Controls RAF OR <i>P</i> value	1.71 1.47×10^{-3}	1.21 0.0970	1.13 0.226	1.06 0.491	1.30 3.75×10^{-3}	1.07 0.692	1.19 0.0350	1.12 0.213
USA	Cases RAF	0.027	0.887	0.144	0.785	0.826	0.051	0.273	0.267
	Controls RAF	0.017	0.884	0.136	0.737	0.789	0.041	0.254	0.231
	OR	1.73	1.02	1.06	1.30	1.26	1.28	1.10	1.22
	<i>P</i> value	0.0132	0.811	0.489	2.03 × 10 ⁻⁴	2.31 × 10 ⁻³	0.0963	0.160	4.90 × 10 ⁻³
Netherlands	Cases RAF	0.026	0.896	0.153	0.764	0.825	0.059	0.259	0.251
	Controls RAF	0.021	0.878	0.141	0.735	0.803	0.043	0.245	0.221
	OR	1.26	1.19	1.10	1.16	1.16	1.45	1.07	1.17
	<i>P</i> value	0.321	0.0870	0.300	0.0440	0.0776	0.0206	0.259	0.0380
Meta	OR	1.46	1.17	1.15	1.12	1.14	1.31	1.12	1.12
	(95% CI)	(1.25-1.69)	(1.10-1.24)	(1.09-1.22)	(1.07-1.17)	(1.08-1.19)	(1.19-1.45)	(1.07-1.17)	(1.07-1.18)
	<i>P</i> value	9.40 × 10 ⁻⁷	4.81×10^{-7}	8.21 × 10 ⁻⁷	5.54 $\times 10^{-7}$	1.30 × 10 ⁻⁷	5.90 × 10 ⁻⁸	5.57 × 10 ⁻⁷	7.08 × 10 ⁻⁷

Supplementary Table 5: Summary statistics for novel variants showing an association with multiple myeloma risk in the GWAS meta-analysis at $P < 1.0 \times 10^{-6}$. Showing SNPs which were not genome-wide significant after replication. Odds ratios derived with respect to the risk allele. Cases RAF, risk allele frequency in discovery cases. Controls RAF, risk allele frequency in discovery controls. Shown are discovery association P values for individual studies (logistic regression) and from meta-analysis of the six GWAS datasets (inverse-variance approach under a fixed effects model).

SNP		rs34229995	rs9372120	rs7781265	rs1948915	rs2811710	rs2790457	rs7193541	rs6066835
UK Cases	AA Aa aa r ²	164/164 7/7 2/2 1.00	105/105 57/59 7/7 1.0	126/127 39/40 3/3 0.97	77/77 68/68 13/14 0.99	61/62 71/73 23/23 0.98	97/97 65/65 12/12 1.00	Genotyped	130/130 41/41 2/2 1.00
UK Controls	AA Aa aa r ²	146/146 16/16 1/1 1.00	110/110 52/52 1/1 1.00	123/123 30/32 2/2 0.97	75/77 64/64 12/13 0.98	69/70 62/63 15/16 0.98	85/87 63/64 12/12 0.99		142/142 21/21 NA 1.00
Germany Cases	AA Aa aa r ²	314/314 20/20 1/1 1.00	193/193 124/125 12/12 0.99	250/254 68/70 6/6 0.95	135/136 142/148 36/38 0.97	146/153 134/138 26/27 0.94	184/185 124/124 26/26 1.00		279/279 53/55 3/3 0.98
USA Cases	AA Aa aa r ²	692/692 50/50 2/2 1.00	428/431 268/269 41/41 0.98	494/506 149/159 13/14 0.86	307/308 320/322 103/104 0.99	308/314 296/299 72/74 0.96	420/421 276/278 38/38 0.99		591/591 143/143 6/6 1.0

Supplementary Table 6: Concordance between directly sequenced and imputed genotype. Showing SNPs which were genome-wide significant after replication. AA, major homozygote; AB, heterozygote; BB, minor homozygote. r² indicates Pearson product-moment correlation coefficient between imputed and sequenced genotype.

Study	Genotype	rs78311596	rs72665486	rs1034447	rs17507636	rs28571765	rs76601148	rs8058578	rs6071887
UK Cases	AA Aa aa r ²	166/166 8/9 N/A 0.94	127/127 35/35 3/3 1.00	120/120 48/48 6/6 1.00	Genotyped	108/108 61/62 4/4 0.99	151/151 22/22 2/2 1.00	Genotyped	97/97 59/59 15/15 1.00
UK Controls	AA Aa aa r ²	142/142 17/18 2/2 0.98	124/125 37/37 1/1 1.00	126/126 35/35 1/1 1.00		101/101 52/52 8/8 1.00	105/105 56/56 2/2 1.00		85/85 70/70 3/3 1.00
Germany Cases	AA Aa aa r ²	318/318 9/9 NA 1.00	138/138 32/32 NA 1.00	246/247 87/87 5/5 0.99		228/229 91/91 9/9 0.99	317/318 19/20 NA 0.97		189/202 109/109 14/14 0.91
USA Cases	AA Aa aa r ²	704/705 28/34 1/1 0.80	587/587 154/154 8/9 0.99	539/540 189/191 10/10 0.98		512/512 193/193 29/29 1.0	672/672 71/71 2/2 1.0		396/396 93/293 49/49 1.0

Supplementary Table 7: Concordance between directly sequenced and imputed genotype. Showing SNPs which were not genome-wide significant after replication. AA, major homozygote; AB, heterozygote; BB, minor homozygote. r² indicates Pearson product-moment correlation coefficient between imputed and sequenced genotype.

SNP		rs34229995	rs9372120	rs7781265	rs1948915	rs2811710	rs2790457	rs7193541	rs6066835
Locus		6p22.3	6q21	7q36.1	8q24.21	9p21.3	10p12.1	16q23.1	20q13.13
Position (bp, hg19)		15,244,018	106,667,535	150,950,940	128,222,421	21,991,923	28,856,819	74,664,743	47,355,009
Allele A		C	T	C	T	A	A	C	T
Allele B (Risk Allele)		G	G	T	C	G	G	T	C
UK	Cases RAF	0.022	0.234	0.136	0.332	0.666	0.752	0.63	0.101
	Controls RAF	0.020	0.210	0.113	0.309	0.634	0.733	0.58	0.083
	OR	1.14	1.15	1.23	1.11	1.12	1.07	1.11	1.37
	<i>P</i> value	0.576	0.091	0.043	0.151	0.106	0.423	0.147	0.008
Sweden/Norway	Cases RAF	0.010	0.210	0.143	0.404	0.710	0.758	0.618	0.070
	Controls RAF	0.020	0.201	0.125	0.366	0.666	0.729	0.583	0.071
	OR	0.59	1.052	1.171	1.17	1.23	1.17	1.156	0.99
	<i>P</i> value	0.128	0.677	0.267	0.106	0.053	0.164	0.142	0.974
Germany	Cases RAF	0.024	0.211	0.134	0.350	0.669	0.759	0.614	0.102
	Controls RAF	0.015	0.197	0.127	0.330	0.630	0.727	0.565	0.805
	OR	1.60	1.09	1.06	1.10	1.19	1.190	1.22	1.29
	<i>P</i> value	0.03	0.26	0.51	0.16	0.009	0.02	0.001	0.015
Denmark	Cases RAF	0.012	0.229	0.147	0.365	0.698	0.751	0.616	0.121
	Controls RAF	0.012	0.199	0.121	0.366	0.651	0.733	0.590	0.074
	OR	1.062	1.19	1.25	1.00	1.24	1.10	1.114	1.71
	<i>P</i> value	0.870	0.081	0.069	0.960	0.019	0.349	0.228	1×10^{-4}
Discovery phase + replication	OR P value	1.37 1.31×10^{-8}	1.18 9.09 × 10 ⁻¹⁵	1.19 9.71 × 10 ⁻⁹	$\begin{array}{c} 1.13 \\ 4.20 \times 10^{-11} \end{array}$	1.15 1.72 × 10 ⁻¹³	1.12 1.77 × 10 ⁻⁸	1.13 5.00 × 10 ⁻¹²	1.26 1.36 × 10 ⁻¹³

Supplementary Table 8: Replication of top association signals. Showing SNPs which were genome-wide significant after replication. Cases RAF, risk allele frequency of replication cases; Control RAF, risk allele frequency of replication controls. *P* values are shown for each replication series (logistic regression) and for the meta-analysis of the 6 discovery datasets and the four replication series combined (inverse-variance approach under a fixed effects model).

SNP)	rs72665486	rs1034447	rs17507636	rs28571765	rs76601148	rs8058578	rs6071887
Locus		4q22.1	6q27	7q22.3	8q11.23	13q13.3	16p11.2	20q12
Position (bp, hg19)		91,913,730	164,613,457	106,291,118	55,449,281	36,746,056	30,726,248	38,621,456
Allele A		T	C	T	C	A	C	G
Allele B (Risk Allele		G	T	C	T	G	T	A
UK	Cases RAF	0.882	0.163	0.760	0.808	0.049	0.280	0.258
	Controls RAF	0.874	0.148	0.745	0.794	0.041	0.255	0.238
	OR	1.07	1.02	1.09	1.15	1.07	1.15	1.10
	P value	0.440	0.812	0.312	0.098	0.694	0.064	0.214
Sweden/Norway	Cases RAF Controls RAF OR <i>P</i> value	0.871 0.879 0.93 0.639	0.155 0.139 1.14 0.400	0.784 0.764 1.27 0.308	0.790 0.785 1.03 0.784	0.040 0.039 1.04 0.882	Genotyping failed	0.188 0.212 0.86 0.236
Germany	Cases RAF	0.893	0.138	0.760	0.810	0.366	0.296	0.232
	Controls RAF	0.884	0.131	0.735	0.807	0.410	0.304	0.216
	OR	1.10	1.06	1.15	1.02	0.89	0.96	1.10
	<i>P</i> value	0.34	0.51	0.06	0.81	0.47	0.59	0.23
Denmark	Cases RAF Controls RAF OR <i>P</i> value	0.884 0.889 0.95 0.709	0.168 0.146 1.18 0.171	0.734 0.751 0.93 0.434	0.766 0.80 0.79 0.0182	0.033 0.039 0.85 0.455	Genotyping failed	0.223 0.215 1.05 0.654
Discovery phase + replication	OR <i>P</i> value	1.14 2.15×10^{-6}	1.13 4.81×10^{-7}	1.11 1.58×10^{-7}	$1.10 \\ 1.58 \times 10^{-6}$	1.23 4.46×10^{-6}	1.10 9.68×10^{-7}	$1.11 \\ 6.47 \times 10^{-7}$

Supplementary Table 9: Replication of top association signals. Showing SNPs which were not genome-wide significant after replication. Cases RAF, risk allele frequency of replication cases; Control RAF, risk allele frequency of replication controls. *P* values are shown for each replication series (logistic regression) and for the meta-analysis of the 6 discovery datasets and the four replication series combined (inverse-variance approach under a fixed effects model).

Cancer	SNP	Reference	Previously Re	ported	Current MM GW	AS	LD with rs1948	915
			Risk Allele	P value	Risk Allele	P value	r ²	D'
Hodgkin's Lymphoma	rs2019960	6	С	7×10^{-8}	С	0.024	1.9×10^{-5}	-0.012
Colorectal Cancer	rs6983267	7	G	5×10^{-14}	Т	0.17	8.7×10^{-4}	-0.046
Prostate Cancer	rs1447295	8	А	6×10^{-18}	С	0.55	1.6×10^{-4}	0.055
Prostate Cancer	rs12682344	8	G	5×10^{-12}	G	0.48	5.2×10^{-3}	-0.57
Prostate Cancer	rs10505477	9	А	9×10^{-9}	G	0.11	1.1×10^{-3}	-0.051
(early onset)								
Colorectal Cancer	rs10505477	10	Т	8×10^{-13}	G	0.11	1.1×10^{-3}	-0.051
Breast Cancer (early	rs2392780	11		1×10^{-8}	G	0.86	1.0×10^{-3}	0.039
onset)								
Renal cell carcinoma	rs6470589	12	G	5×10^{-11}	G	0.82		
Bladder Cancer	rs9642880	13	Т	4×10^{-38}	Т	0.17	3.9×10^{-5}	8.6×10^{-3}
Chronic lymphocytic	rs2466035	14	С	2×10^{-8}	С	3.6×10^{-3}	0.15	0.39
leukemia								
Breast Cancer	rs13281615	15	G	1×10^{-17}	G	0.076	6.8×10^{-4}	-0.046
Breast Cancer	rs11780156	15	Т	3×10^{-11}	Т	0.22	2.8×10^{-5}	0.0076
Ovarian Cancer	rs10088218	16		1×10^{-17}	А	0.86	1.0×10^{-3}	-0.13
Prostate Cancer	rs6983561	17	С	4×10^{-13}	С	0.47	4.9×10^{-3}	-0.55
Prostate Cancer	rs13254738	18	С	4×10^{-10}	А	0.43	0.030	-0.17
Prostate Cancer	rs4242384	19	С	3×10^{-16}	А	0.57	2.1×10^{-4}	0.063
Prostate Cancer	rs1016343	19	Т	4×10^{-10}	Т	0.63	0.015	0.16
Glioma	rs4295627	20	G	5×10^{-21}	G	5.4×10^{-3}	6.3×10^{-4}	0.0047
Breast Cancer	rs1562430	21	А	3×10^{-11}	С	0.65	8.9×10^{-4}	0.037
Prostate Cancer	rs1456315	22	А	2×10^{-29}	С	0.26	0.028	-0.17
Prostate Cancer	rs7837688	22	Т	1×10^{-25}	G	0.68	3.7×10^{-4}	0.083
Prostate Cancer	rs16902094	23	G	6×10^{-15}	G	0.74	1.9×10^{-4}	-0.049
Prostate Cancer	rs16901979	23	А	3×10^{-14}	А	0.50	5.2×10^{-3}	-0.57
Prostate Cancer	rs445114	23	Т	5×10^{-10}	С	0.13	1.6×10^{-3}	-0.076
Glioma	rs891835	24	G	8×10^{-11}	G	0.039	2.1×10^{-5}	5.8×10^{-3}
Colorectal Cancer	rs7014346	25	А	9×10^{-26}	G	7.9×10^{-4}	2.2×10^{-4}	0.028
Prostate Cancer	rs6983267	26	G	7×10^{-12}	Т	0.17	8.7×10^{-4}	-0.046
Glioma	rs55705857	27	А	2.24×10^{-38}	А	9.5×10^{-4}	1.2×10^{-5}	-0.017

Supplementary Table 10: Previously reported 8q24.21 cancer associated SNPs and their LD with rs1948915⁶⁻²⁷.

			Previously Rep	orted	Current MM GW	/AS	LD with rs2811	710
Cancer	SNP	Reference	Risk Allele	P value	Risk Allele	<i>P</i> value	r ²	D'
Basal cell carcinoma	rs2151280	28	G	3×10^{-10}	А	0.0127	4.14×10^{-4}	-0.0280
ALL	rs3731249	29	Т	9.4×10^{-23}	Т	0.957	0.0385	0.920
CLL	rs1679013	30	С	1×10^{-8}	С	6.54×10^{-3}	4.27×10^{-3}	0.0791
Glioma	rs4977756	31	G	1×10^{-8}	А	0.368	0.0513	0.360
Melanoma	rs7023329	32	А	7×10^{-9}	G	0.0822	1.06×10^{-4}	-0.0131
Glioma	rs2157719	20	С	5×10^{-16}	Т	0.399	0.0485	0.328
Glioma (High Grade)	rs1412829	33	С	2×10^{-10}	С	0.285	0.0434	-0.317

Supplementary Table 11: Previously reported 9p21.3 cancer associated SNPs and their LD with rs2811710^{20,28-33}.

		rs34229995	rs9372120	rs7781265	rs1948915	rs2811710	rs2790457	rs7193541	rs6066835
UK	Beta	0.44	0.64	-0.093	-0.43	-0.20	-0.36	-0.022	-0.075
	<i>P</i> value	0.67	0.076	0.84	0.19	0.56	0.31	0.94	0.88
Sweden/	Beta	1.88	1.31	NA	0.33	-0.054	0.60	-0.30	1.82
Norway	<i>P</i> value	0.070	9.5×10^{-3}	NA	0.47	0.91	0.23	0.51	0.01
Germany	Beta	0.068	0.15	-0.41	0.34	0.40	0.24	0.22	0.14
	<i>P</i> value	0.94	0.73	0.43	0.35	0.32	0.57	0.56	0.82
USA	Beta	0.93	-1.18	0.023	0.28	0.017	-0.51	0.55	-0.71
	<i>P</i> value	0.45	0.032	0.97	0.56	0.97	0.36	0.25	0.35
Netherlands	Beta	-0.96	-0.11	-0.12	-0.046	-0.45	-0.33	-0.47	-0.21
	P value	0.16	0.67	0.95	0.84	0.049	0.16	0.025	0.57

Supplementary Table 12: Relationship between SNP genotype and age at diagnosis. Analysis based on Beta values calculated from linear regression on the discovery phase data sets from UK (cases=2282, controls=5197), Sweden/Norway (cases=1714, controls=10391), Germany (cases=1508, controls=2107), USA (cases=780, controls=1857) and Netherlands (cases=555, controls=2669).

		rs34229995	rs9372120	rs7781265	rs1948915	rs2811710	rs2790457	rs7193541	rs6066835
UK	Beta	-0.052	-0.013	-0.11	0.036	-0.028	0.12	0.021	0.069
	<i>P</i> value	0.79	0.85	0.22	0.58	0.67	0.081	0.74	0.49
Sweden/	Beta	0.26	-0.020	NA	-0.083	-0.042	-0.12	-0.11	0.11
Norway	P value	0.12	0.81	NA	0.25	0.58	0.12	0.13	0.34
Germany	Beta	-0.078	-0.11	0.021	0.049	-0.028	-0.06	-0.012	-0.24
	<i>P</i> value	0.69	0.22	0.84	0.53	0.74	0.45	0.88	0.06
USA	Beta	-0.43	0.16	-0.061	0.019	-0.13	-0.040	-0.046	-0.60
	<i>P</i> value	0.15	0.20	0.69	0.86	0.24	0.75	0.67	1.7×10^{-3}
Netherlands	Beta	-0.11	-0.13	0.077	-0.11	0.017	-0.012	0.028	-0.068
	<i>P</i> value	0.95	0.88	0.46	0.99	0.86	0.90	0.78	0.55

Supplementary Table 13: Relationship between SNP genotype and sex of multiple myeloma cases. Analysis based on Beta values calculated from logistic regression on the discovery phase data sets from UK (cases=2282, controls=5197), Sweden/Norway (cases=1714, controls=10391), Germany (cases=1508, controls=2107), USA (cases=780, controls=1857) and Netherlands (cases=555, controls=2669).

			rs34229995	rs9372120	rs7781265	rs1948915	rs2811710	rs2790457	rs7193541	rs6066835
Hyperdiploid	UK (702) Germany (661)	Beta <i>P</i> value Beta	0.0285 0.892 -0.152	-0.111 0.140 -0.0373	-6.14×10^{-3} 0.950 7.33 × 10 ⁻³	-0.0441 0.522 0.0802	0.0191 0.783 -1.37 × 10 ⁻³	-0.142 0.0555 -0.0318	-0.0374 0.569 -0.0804	0.369 5.74 × 10 ⁻⁴ 0.0649
	Meta	P value Beta P value	0.435 -0.0686 0.630	0.677 -0.0805 0.162	0.944 1.17 × 10 ⁻⁴ 0.999	0.303 0.0104 0.840	0.987 0.0105 0.843	0.713 -0.0953 0.0901	0.281 -0.0562 0.255	0.600 0.239 3.20 × 10 ⁻³
Translocation	UK (571) Germany (768)	Beta <i>P</i> value Beta	0.0181 0.936 0.187	0.155 0.0517 -8×10^{-4}	-0.230 0.0272 -0.0232	0.0758 0.302 -0.0127	0.116 0.118 -6.96 × 10 ⁻³	-0.137 0.0818 -0.0771	0.0190 0.786 -0.0657	-0.0618 0.588 -0.151
	Meta	<i>P</i> value Beta <i>P</i> value	0.331 0.116 0.429	0.992 0.0857 0.150	0.824 -0.127 0.0854	0.870 0.0338 0.526	0.931 0.0596 0.274	0.370 -0.110 0.0589	0.375 -0.0210 0.680	0.219 -0.103 0.217
t(11;14)	UK (231) Germany (277) Meta	Beta P value Beta P value Beta	0.0335 0.918 -0.232 0.350 -0.134	0.186 0.104 0.0900 0.434 0.138	-0.380 0.0110 -0.0818 0.543 -0.215	0.0845 0.423 -0.195 0.0510 -0.0628	0.119 0.261 -0.0151 0.885 0.0509	-0.322 4.37×10^{-3} 0.0881 0.427 -0.113	0.0191 0.850 -0.0224 0.815 -2.69×10^{-3}	0.171 0.296 -0.130 0.409 0.0151
		P value	0.497	0.0886	0.0311	0.387	0.494	0.153	0.969	0.894
t(4;14)	UK (170) Germany (142) Meta	Beta P value Beta P value Beta P value	-0.392 0.292 0.521 0.112 0.121 0.622	0.0396 0.764 -0.110 0.472 -0.0243 0.808	-0.0224 0.897 0.206 0.245 0.0887 0.474	0.154 0.204 0.0281 0.831 0.0963 0.281	0.0172 0.887 -0.170 0.219 -0.0644 0.480	0.176 0.177 -0.122 0.407 0.0451 0.644	0.0733 0.526 -0.135 0.289 -0.0210 0.806	-0.351 0.0622 -0.129 0.541 -0.252 0.0724
t(14;16)	UK (24) Germany (29) Meta	Beta P value Beta P value Beta P value	1.67 0.0778 0.384 0.586 0.843 0.136	0.309 0.361 -0.182 0.587 0.0659 0.784	-0.210 0.635 0.205 0.595 0.0263 0.928	-0.139 0.657 0.0490 0.863 -0.0362 0.863	-0.189 0.541 0.235 0.420 -0.0356 0.867	-0.342 0.305 -0.283 0.367 0.311 0.174	0.0767 0.798 0.0260 0.923 -0.0486 0.809	-0.896 0.0637 -0.487 0.284 -0.680 0.0403

Supplementary Table 14: Relationship between SNP genotype and multiple myeloma subtype. Case-only analysis; Beta values obtained from logistic regression. FISH and ploidy classification of UK and German samples were determined as previously described³⁴⁻³⁶. Number of samples in each cohort indicated in brackets.

SNP Locus Position (bp, h Allele A Allele B (Risk A Nearest Gene	g19) Allele)	rs34229995 6p22.3 15,244,018 C G JARID2	rs9372120 6q21 106,667,535 T G <i>ATG5</i>	rs7781265 7q36.1 150,950,940 C T SMARCD3	rs1948915 8q24.21 128,222,421 T C <i>CCAT1</i>	rs2811710 9p21.3 21,991,923 A G <i>CDKN2A</i>	rs2790457 10p12.1 28,856,819 A G <i>WAC</i>	rs7193541 16q23.1 74,664,743 C T <i>RFWD3</i>	rs6066835 20q13.13 47,355,009 T C <i>PREX1</i>
UK-MyIX	HR	1.48	0.82	0.83	0.98	1.07	0.91	0.94	0.97
	(95%CI)	(1.03-2.12)	(0.71-0.95)	(0.68-1.01)	(0.86-1.13)	(0.94-1.22)	(0.79-1.05)	(0.83-1.07)	(0.79-1.19)
	P value	0.035	0.008	0.06	0.827	0.31	0.208	0.344	0.775
UK-MyXI	HR	0.81	1.19	1.12	1.05	0.91	0.92	1.05	0.88
	(95%CI)	(0.40-1.64	(0.96-1.47)	(0.84-1.49)	(0.85-1.29)	(0.73-1.13)	(0.73-1.16)	(0.87-1.29)	(0.63-1.25)
	<i>P</i> value	0.555	0.117	0.423	0.679	0.409	0.484	0.61	0.484
GER-GMMG	HR	0.89	1.02	1.19	1.04	0.77	0.88	1.01	1.09
	(95%CI)	(0.49-1.63)	(0.76-1.35)	(0.89-1.60)	(0.83-1.31)	(0.59-1.01	(0.67-1.17)	(0.78-1.28)	(0.77-1.54)
	<i>P</i> value	0.710	0.918	0.243	0.731	0.06	0.395	0.943	0.634
US-UAMS	HR	1.01	0.96	1.16	0.96	1.07	0.94	1.06	1.11
	(95%CI)	(0.68-1.51)	(0.80-1.5)	(0.93-1.45)	(0.82-1.12)	(0.87-1.22)	(0.78-1.14)	(0.91-1.24)	(0.87-1.42)
	<i>P</i> value	0.958	0.631	0.174	0.591	0.650	0.552	0.430	0.410
Combined	HR	1.13 (0.90-	0.94 (0.86-	1.02 (0.91-	0.99 (0.91-	1.01 (0.92-	0.92 (0.83-	1.00 (0.92-	1.01 (0.89-
	(95%CI)	1.43)	1.04)	1.15)	1.08)	1.10)	1.01)	1.09)	1.15)
	I ²	22	64	55	0	50	0	50	0
	P value	0.295	0.206	0.698	0.894	0.85	0.084	0.845	0.866

Supplementary Table 15: Relationship between genome-wide significant SNPs genotype and patient overall survival³⁷**.** Data from: 1,165 cases from the UK MRC Myeloma-IX trial (UK-MyIX); 877 MM cases from the UK MRC Myeloma-XI trial (UK-MyXI); 511 of the patients recruited to the German-GWAS (GER-GMMG); 703 MM cases in the UAMS Myeloma Institute for Research and Therapy GWAS (US-UAMS). *P* values calculated from Cox regression analysis.

SNP	Gene	Non silent mutations	Silent mutations	Noncoding mutation	P value	q value (FDR)
rs34229995	DTNBP1	0	1	0	0.184	1
rs34229995	JARID2	0	2	0	0.910	1
rs9372120	ATG5	0	1	0	1	1
rs7781265	SMARCD3	0	0	0	1	1
rs7781265	CHPF2	0	1	0	0.983	1
rs2811710	CDKN2A	0	0	0	1	1
rs2790457	WAC	0	1	0	0.760	1
rs7193541	RFWD3	0	0	0	1	1
rs6066835	PREX1	0	0	0	1	1

Supplementary Table 16: Mutation significance analysed with MutSigCV³⁸ on 463 MM exomes. The frequency of somatic mutation in genes annotated by GWAS signals was derived from tumor whole exome sequencing of Myeloma XI trial patients.

SNP	Locus	Gene 1	Gene 2	Pearson's Correlation (95% CI)	P value
rs9372120	6q21	ATG5	PRDM1	0.50 (0.29-0.66)	1.99×10^{-5}
rs2811710	9p21.3	MTAP	CDKN2A	0.54 (0.34-0.69)	3.13×10^{-6}
rs2811710	9p21.3	CDKN2A	CDKN2B	0.53 (0.33-0.68)	4.99×10^{-6}

Supplementary Table 17: A pair-wise correlation between gene expression (RNA-seq) within TADs. Analysis based on RNAseq transcript counts from 66 MM cell lines from the Keat's lab Data Repository³⁹ (Pearson product-moment correlation coefficient).

SNP	Reaction	Conditions		Sequence
rs34229995	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTGCCCCATTGGATCCTTCCC
			Kaspar A2	GAAGGTCGGAGTCAACGGATTCTGCCCCATTGGATCCTTCCG
			Kaspar C	CACTTCACAATTGGAAAAATAAATGATCTT
	Sanger seq	Std	Seq F	ATTCCCAGTATGCCAGTCCT
			Seg R	AGGCACGTTATTGGAAGCTT
rs9372120	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTCCTCCCTGGGTTACCAAATTCTC
			Kaspar A2	GAAGGTCGGAGTCAACGGATTACCTCCCTGGGTTACCAAATTCTA
			Kaspar C	ACCATTTTATATCAGACTCTCAAACATCAG
	Sanger seg	Std	Sea F	TGCACATTAACTCAGCCACA
	84		Seg R	GGAAACCGTATTTGAGTAGACCA
rs7781265	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTCCCAATTCAGGGTCCCTGGAT
			Kaspar A2	GAAGGTCGGAGTCAACGGATTCCCAATTCAGGGTCCCTGGAC
			Kaspar C	
	Sanger seg	Std	Sea F	
	Sunger seq	5.0	Seg R	
rs1948915	Kasnar	Std42nlus5	Kasnar A1	
131340313	Казраі	504201035	Kaspar A2	
			Kaspar Az	
	Sangar cog	C+d	Kaspar C	
	Sanger seq	Siu	Seq F	
2011710		CI 142	Seq R	
rs2811710	Kaspar	St042	Kaspar A1	
			Kaspar A2	
			Kaspar C	
	Sanger seq	Std	Seq F	
			Seq R	TTGTTACTTCTACCTTGGTGCA
rs2790457	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTGTGGTGGTACCTGCCTTTAGTT
			Kaspar A2	GAAGGTCGGAGTCAACGGATTGTGGTGGTACCTGCCTTTAGTC
			Kaspar C	CCTTGACCTCCTCAGCTTAAGTGAT
	Sanger seq	Std	Seq F	TGCATTTCAGTGTGGGCTTT
			Seq R	AGTCATAACTCAACAAACCGTC
rs7193541	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTGGACTGGCCAATGGTTCAG
			Kaspar A2	GAAGGTCGGAGTCAACGGATTGCTGGACTGGCCAATGGTTCAA
			Kaspar C	GACTGCTCGTGTTTCGCACGTCAT
rs6066835	Kaspar	Std42plus5	Kaspar A1	GAAGGTGACCAAGTTCATGCTGTGCCCAGTTCAATCACGCCC
			Kaspar A2	GAAGGTCGGAGTCAACGGATTGTGCCCAGTTCAATCACGCCT
			Kaspar C	TGCAGGGTCTCAGGCCTGAGAT
	Sanger seq	Std	Seq F	CTGGTGAGGAGGATTCTGGG
			Seq R	GGAACACTTGGACTCTGAGC
rs78311596	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTGGAGATGGTCCTATGCTTTTAGGAT
			Kaspar A2	GAAGGTCGGAGTCAACGGATTGGAGATGGTCCTATGCTTTTAGGAA
			Kaspar C	TAAGGTCACTCACATGGTACGGGA
	Sanger seq	Std	Seq F	CGCTGTGCTCCAACATTCAT
		1	Seq R	CTGCAGCATTCCAGAGGCT
rs72665486	Kaspar	3stepStd42	Kaspar A1	GAAGGTGACCAAGTTCATGCTTTCCAGTTGAGCTTCGGATAAGAC
			Kaspar A2	GAAGGTCGGAGTCAACGGATTTTCCAGTTGAGCTTCGGATAAGAA
			Kaspar C	CACAAGACTGAGATCAAGGTAATCTTCAA
	Sanger seg	Std	Sea F	CACAGTTTGTTTTGGGTTAGGA
	84		Seg R	TTGAAGACCTAACGGCCCTA
rs1034447	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTAGGAAAACTCCCATGATGCAGTG
10100111	Raspar	564.12	Kaspar A2	
			Kaspar C	GTCTGCACACATCTCCATGTGTATG
	Sanger seg	Std	Sea F	
	Jangel sey	5.0	Seg P	
rc17E07626	Kachar	Std42	Kachar A1	
121/20/030	казраг	51042		
			Kaspar A2	
	Kaaraara	6442	Kaspar C	
1828571765	Kaspar	5042	Kaspar A1	
			Kaspar A2	GAAGGILGGAGILAALGGAITALLIGIAATLLLAGCACITIGAGA

			Kaspar C	TCTCAAACTCCTGGGCTCAAGCAAT
	Sanger seq	Std	Seq F	TCTTACTTCCATCACCCATGT
			Seq R	AGCTATACTATGAATCAAAGCA
rs76601148	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTACAAAATGGGATATCCAATGATTACTACTA
			Kaspar A2	GAAGGTCGGAGTCAACGGATTCAAAATGGGATATCCAATGATTACTACTG
			Kaspar C	CCTGGATAAGATAATCACCGTGTTCATTT
	Sanger seq	Std	Seq F	TGTAGCGACTGGAAAATGGC
			Seq R	CCTGGATAAGATAATCACCGTGT
rs8058578	Kaspar	Std42	Kaspar A1	GAAGGTGACCAAGTTCATGCTTCAACTTCATATTGTTGGTGTTTTCTC
			Kaspar A2	GAAGGTCGGAGTCAACGGATTCTTCAACTTCATATTGTTGGTGTTTTCTT
			Kaspar C	GGGCGAAAAAGGAAGAGCCAAAGA
rs6071887	Kaspar	Std42plus5	Kaspar A1	GAAGGTGACCAAGTTCATGCTGAACAGAAGAAATAATAAATA
			Kaspar A2	GAAGGTCGGAGTCAACGGATTACAGAAGAAATAATAAATA
			Kaspar C	CGAGATTCTTGGAAGAAGGTTGATTACAT
	Sanger seq	Std	Seq F	CCAACCAGCAGAGTTTAGACG
			Seq R	ATGGAGTTCAGCTTGTGGGT

KASPAR conditions

Std42

- Hot Start: 94ºC for 15 minutes
- Stage 1: 20 cycles
 - 94ºC for 10 seconds
 - 57ºC for 5 seconds
 - \circ 72°C for 10 seconds
 - Stage 2: 22 cycles
 - \circ 94°C for 10 seconds
 - 57ºC for 20 seconds
 - 72ºC for 40 seconds

Std42plus5

-

- Hot Start: 94ºC for 15 minutes
- Stage 1: 20 cycles
 - 94ºC for 10 seconds
 - 57ºC for 5 seconds
 - 72°C for 10 seconds
- Stage 2: 22 cycles
 - 94ºC for 10 seconds
 - 57ºC for 20 seconds
 - 72°C for 40 seconds
- Stage 3: 5 cycles
 - 94°C for 10 seconds
 - 57ºC for 1 minute

3StepStd42

- Hot Start: 94ºC for 15 minutes
- Stage 1: 42 cycles
 - 94°C for 10 seconds
 - 57ºC for 20 seconds
 - 72ºC for 40 seconds

Sequencing conditions

Std

- 95ºC for 5 minutes
- 25 cycles
 - 96ºC for 30 seconds
 - 50°C for 15 seconds
 - 60ºC for 1 minute

Supplementary Table 18: Primers and probes and reaction conditions used for this study.

SUPPLEMENTARY REFERENCES

- 1. Rao, S.S. *et al.* A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* **159**, 1665-80 (2014).
- 2. Swaminathan, B. *et al.* Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. *Nat Commun* **6**, 7213 (2015).
- 3. Broderick, P. *et al.* Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. *Nat Genet* **44**, 58-61 (2012).
- 4. Chubb, D. *et al.* Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. *Nat Genet* **45**, 1221-5 (2013).
- 5. Swaminathan, B. *et al.* Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. *Nat Commun* **6**, 7213 (2015).
- 6. Cozen, W., et al. "A meta-analysis of Hodgkin lymphoma reveals 19p13. 3 TCF3 as a novel susceptibility locus." *Nature Commun* **5**, 3856 (2014).
- 7. Zhang, Ben, et al. "Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk." Nature genetics **46**, 533-542 (2014).
- 8. Knipe, Duleeka W., *et al.* "Genetic Variation in Prostate-Specific Antigen–Detected Prostate Cancer and the Effect of Control Selection on Genetic Association Studies." *Cancer Epidemiology Biomarkers & Prevention* **23**, 1356-1365 (2014).
- 9. Lange, Ethan M., et al. "Genome-wide association scan for variants associated with early-onset prostate cancer." *PloS one* **9**, e93436 (2014).
- 10. Whiffin, Nicola, *et al.* "Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis." *Human molecular genetics* **23**, 4729-4737 (2014).
- 11. Ahsan, Habibul, et al. "A Genome-wide association study of early-onset breast cancer identifies PFKM as a novel breast cancer gene and supports a common genetic spectrum for breast cancer at any age." *Cancer Epidemiology Biomarkers & Prevention* **23**, 658-669 (2014).
- 12. Gudmundsson, Julius, et al. "A common variant at 8q24. 21 is associated with renal cell cancer." *Nature communications* **4**, 2776 (2013).
- 13. Figueroa, Jonine D., *et al.* "Genome-wide association study identifies multiple loci associated with bladder cancer risk." *Human molecular genetics* **23**, 1387-1398 (2014).
- 14. Berndt, Sonja I., *et al.* "Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia." *Nature genetics* **45**, 868-876 (2013).
- 15. Michailidou, Kyriaki, *et al.* "Large-scale genotyping identifies 41 new loci associated with breast cancer risk." *Nature genetics* **45**, 353-361 (2013).
- 16. Pharoah, Paul DP, et al. "GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer." *Nature genetics* **45**, 362-370 (2013).
- 17. Xu, Jianfeng, *et al.* "Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31. 2 and 19q13. 4." *Nature genetics* **44**, 1231-1235 (2012).
- 18. Cheng, Iona, *et al.* "Evaluating genetic risk for prostate cancer among Japanese and Latinos." *Cancer Epidemiology Biomarkers & Prevention* **21**, 2048-2058 (2012).
- 19. Schumacher, Fredrick R., *et al.* "Genome-wide association study identifies new prostate cancer susceptibility loci." *Human molecular genetics* **20**, 3867-3875 (2011).
- 20. Sanson, Marc, et al. "Chromosome 7p11. 2 (EGFR) variation influences glioma risk." Human molecular genetics 20, 2897-904 (2011).
- 21. Fletcher, Olivia, *et al.* "Novel breast cancer susceptibility locus at 9q31. 2: results of a genome-wide association study." *Journal of the National Cancer Institute* **103**, 425-35 (2011).
- 22. Takata, Ryo, *et al.* "Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population." *Nature genetics* **42**, 751-754 (2010).
- 23. Gudmundsson, Julius, *et al.* "Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility." *Nature genetics* **41**, 1122-1126 (2009).

- 24. Shete, Sanjay, et al. "Genome-wide association study identifies five susceptibility loci for glioma." *Nature genetics* **41**, 899-904 (2009).
- 25. Tenesa, Albert, *et al.* "Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21." *Nature genetics* **40**, 631-637 (2008).
- 26. Eeles, Rosalind A., et al. "Multiple newly identified loci associated with prostate cancer susceptibility." *Nature genetics* **40**, 316-321 (2008).
- 27. Enciso-Mora, Victor, et al. "Deciphering the 8q24. 21 association for glioma." Human molecular genetics 22, 2293-302 (2013).
- 28. Stacey, Simon N., *et al.* "Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma." *Human molecular genetics* **23**, 3045-53 (2014).
- 29. Xu, Heng, *et al.* "Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children." *Nature communications* **6**, 7553 (2015).
- 30. Berndt, Sonja I., *et al*. "Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia." *Nature genetics* **45**, 868-876 (2013).
- 31. Rajaraman, Preetha, et al. "Genome-wide association study of glioma and meta-analysis." Human genetics **131**, 1877-1888 (2012).
- 32. Barrett, Jennifer H., *et al.* "Genome-wide association study identifies three new melanoma susceptibility loci." *Nature genetics* **43**, 1108-1113 (2011).
- 33. Wrensch, Margaret, et al. "Variants in the CDKN2B and RTEL1 regions are associated with highgrade glioma susceptibility." *Nature genetics* **41**, 905-908 (2009).
- 34. Chiecchio, L. et al. Leukemia 20, 1610–1617 (2006).
- 35. Neben, K. et al. Haematologica 95, 1150–1157 (2010).
- 36. Kaiser, M. F., et al. Leukemia 27, 1754-1757 (2013).
- 37. Johnson, David C., *et al.* "Genome-wide association study identifies variation at 6q25. 1 associated with survival in multiple myeloma." *Nature communications* **7**, 10290 (2016).
- 38. Lawrence, Michael S., *et al.* "Mutational heterogeneity in cancer and the search for new cancerassociated genes." *Nature* **499**, 214-218 (2013).
- 39. Keats, Jonathan J., et al. Keats Lab, http://www.keatslab.org/data-repository.
- 40. Westra, H.J. *et al.* Systematic identification of trans eQTLs as putative drivers of known disease associations. *Nat Genet* **45**, 1238-43 (2013).
- 41. Grundberg, E. *et al.* Mapping cis- and trans-regulatory effects across multiple tissues in twins. *Nat Genet* **44**, 1084-9 (2012).