## A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city

Pedro Dorado-Morales<sup>1,+</sup>, Cristina Vilanova<sup>1,2,+</sup>, Juli Peretó<sup>1,2,3</sup>, Francisco M. Codoñer<sup>4</sup>,

Daniel Ramón<sup>5</sup> and Manuel Porcar<sup>1,2,\*</sup>

<sup>1</sup>Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Paterna 46980, Spain

<sup>2</sup>Darwin Bioprospecting Excellence, SL., Parc Cientific Universitat de València, Paterna,

Valencia, Spain

<sup>3</sup>Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot 46100, Spain

<sup>4</sup>Lifesequencing S.L., Parc Científic Universitat de València, Paterna, Spain.

<sup>5</sup>Biopolis S.L., Parc Cientific Universitat de València, Paterna, Valencia, Spain

\*Address correspondence to Manuel Porcar: <u>manuel.porcar@uv.es</u>

<sup>+</sup>These authors contributed equally to this work.

## Supplementary information

## **Supplementary Tables**

**Table S1.** Taxonomical classification of the bacterial species isolated from solar panel samples according to 16S rDNA sequence similarity.

| # | Isolate ID | Best BLAST hit             | #  | Isolate ID | Best BLAST hit              |
|---|------------|----------------------------|----|------------|-----------------------------|
| 1 | S10-LB-01  | Planomicrobium glaciei     | 28 | S13-LB-03  | Kocuria rosea               |
| 2 | S10-LB-02  | Kocuria rosea              | 29 | S13-LB-04  | Planomicrobium chinense     |
| 3 | S10-LB-03  | Kocuria rosea              | 30 | S13-LB-05  | Planomicrobium koreense     |
| 4 | S10-LB-04  | Microbacterium paraoxydans | 31 | S13-LB-06  | Pseudomonas psychrotolerans |

| 5  | S10-LB-05    | Planomicrobium glaciei       | 32 | S13-MAR-01 | N.A.                        |
|----|--------------|------------------------------|----|------------|-----------------------------|
| 6  | S10-LB-06    | Arthrobacter agilis          | 33 | S13-MAR-02 | Bacillus aquimaris          |
| 7  | S10-LB-07    | Kocuria sediminis            | 34 | S13-MAR-03 | N.A.                        |
| 8  | S10-LB-09    | Kocuria rosea                | 35 | S13-MAR-04 | Planococcaceae bacterium    |
| 9  | S11-LB-01    | Kocuria rosea                | 36 | S13-MAR-05 | N.A.                        |
| 10 | S11-LB-02    | Micrococcus xinjiangensis    | 37 | S13-MAR-06 | Planomicrobium okeanokoites |
| 11 | S11-LB-03    | Planomicrobium glaciei       | 38 | S14-LB-01  | Planococcaceae bacterium    |
| 12 | S11-LB-04-01 | Bacillus infantis            | 39 | S14-LB-02  | N.A.                        |
| 13 | S11-LB-04-02 | Bacillus infantis            | 40 | S14-LB-03  | Planomicrobium chinense     |
| 14 | S11-LB-05    | N.A.                         | 41 | S14-LB-04  | Kocuria rosea               |
| 15 | S12-LB-01    | Kocuria rosea                | 42 | S14-MAR-01 | Planomicrobium okeanokoites |
| 16 | S12-LB-02    | Cellulosimicrobium cellulans | 43 | S14-MAR-02 | Planomicrobium okeanokoites |
| 17 | S12-LB-03    | Planomicrobium glaciei       | 44 | S14-MAR-03 | N.A.                        |
| 18 | S12-LB-04    | Enterobacter cloacae         | 45 | S15-LB-01  | Kocuria rosea               |
| 19 | S12-LB-05    | Kocuria rosea                | 46 | S16-LB-01  | Kocuria rosea               |
| 20 | S12-LB-06    | Bacillus flexus              | 47 | S16-LB-02  | Arthrobacter agilis         |
| 21 | S12-LB-07    | N.A.                         | 48 | S16-LB-03  | N.A.                        |
| 22 | S12-LB-08    | Planomicrobium glaciei       | 49 | S17-LB-01  | Kocuria rosea               |
| 23 | S12-LB-09    | Planomicrobium glaciei       | 50 | S18-MAR-01 | N.A.                        |
| 24 | S12-LB-10    | Cellulosimicrobium cellulans | 51 | S18-MAR-02 | Planomicrobium chinense     |
| 25 | S12-LB-11    | Kocuria rosea                | 52 | S18-MAR-03 | Domibacillus robiginosus    |
| 26 | S13-LB-01    | Planomicrobium okeanokoites  | 53 | S19-MAR-01 | Domibacillus robiginosus    |
| 27 | S13-LB-02    | Planomicrobium okeanokoites  |    |            |                             |

N.A.: Non-assigned. Low quality sequences or assignations

 Table S2. Summary of sequencing statistics from the 16S/18S profile analysis.

|                               | Solar panel pool (2013) |        | Solar p | anel 1<br>14) | Solar j<br>(20 | Solar panel 2<br>(2014) |       | Solar panel 3<br>(2014) |  |
|-------------------------------|-------------------------|--------|---------|---------------|----------------|-------------------------|-------|-------------------------|--|
|                               | 16S 18S                 |        | 16S     | 18S           | 16S            | 18S                     | 16S   | 18S                     |  |
| # Sequences obtained          | 485094                  | 105781 | 47013   | 4566          | 48633          | 5446                    | 25971 | 18260                   |  |
| Average length                | 582                     | 574    | 495     | 456           | 498            | 478                     | 505   | 507                     |  |
| Total Mb                      | 282,32                  | 60,71  | 23,28   | 2,08          | 24,26          | 2,61                    | 13,13 | 9,27                    |  |
| # Sequences after trimming    | 136194                  | 6463   | 25184   | 796           | 23628          | 1722                    | 14804 | 6220                    |  |
| Averag. length after trimming | 549                     | 551    | 473     | 475           | 481            | 478                     | 486   | 490                     |  |
| # Genera (>0.01% abundance)   | 160                     | 40     | 119     | 43            | 168            | 34                      | 138   | 28                      |  |
| # Species (>0.01% abundance)  | 303                     | 49     | 249     | 78            | 343            | 63                      | 271   | 61                      |  |
| Shannon index                 | 4,94                    | 4,01   | 5,64    | 3,74          | 6,23           | 4,89                    | 5,31  | 4,62                    |  |

|                                             | Solar panel 1<br>(2014) | Solar panel 3<br>(2014) |
|---------------------------------------------|-------------------------|-------------------------|
| Number of reads obtained                    | 18596346                | 19220250                |
| Average length                              | 186,315                 | 186,345                 |
| Total Mb                                    | 3464,783                | 3581,649                |
| Average quality                             | 32,855                  | 32,995                  |
| Number of sequences after trimming          | 18240690                | 18716970                |
| Average length after trimming               | 188,19                  | 188,81                  |
| Total Mb after trimming                     | 3432,688                | 3533,922                |
| Average quality after trimming              | 33,075                  | 33,275                  |
| Number of contigs after assembly            | 1486634                 | 717211                  |
| N50                                         | 229                     | 335                     |
| Maximum contig length                       | 6408                    | 13796                   |
| Average contig length                       | 262                     | 405                     |
| Number of predicted ORFs                    | 104311                  | 189676                  |
| Number of genera (>0.01% abundance) $^{1}$  | 254                     | 453                     |
| Number of species (>0.01% abundance) $^{1}$ | 487                     | 669                     |
| Shannon index <sup>2</sup>                  | 4,39                    | 5,57                    |

**Table S3.** Summary of sequencing statistics from the shotgun metagenomic sequencing of solar panels 1 and 3 in 2014.

 $^{1}$ Estimated from BLASTP searches of the predicted ORFs against the NCBI nr database (e-value < 1e-5)  $^{2}$ Calculated from species-level assignations

 Table S4. Differentially expressed proteins between day- and night-collected samples.

|              |                                                                                              | Day/Night<br>t-value | p-<br>value | Fold<br>Change<br>Day/Night | Fold<br>Change<br>Night/Day |
|--------------|----------------------------------------------------------------------------------------------|----------------------|-------------|-----------------------------|-----------------------------|
| gi 504554779 | cold-shock protein [Geodermatophilaceae]                                                     | 3,122                | 0,035       | 25,986                      | 0,038                       |
| gi 656266558 | molecular chaperone GroEL<br>[Arsenicicoccus bolidensis]                                     | 4,361                | 0,012       | 13,665                      | 0,073                       |
| gi 503987093 | 50S ribosomal protein L7/L12<br>[Niastella koreensis]                                        | 3,041                | 0,038       | 9,944                       | 0,101                       |
| gi 502016435 | hypothetical protein<br>[Deinococcus deserti]                                                | 3,625                | 0,022       | 9,373                       | 0,107                       |
| gi 517310793 | ATP-1 H+-transporting ATP synthase<br>[Fusarium fujikuroi IMI 58289]                         | -3,263               | 0,031       | 0,473                       | 2,114                       |
| gi 656340823 | S-layer protein<br>[Deinococcus sp. RL]                                                      | -5,991               | 0,004       | 0,346                       | 2,890                       |
| gi 636360381 | major outer membrane lipoprotein 1<br>[Klebsiella pneumoniae MGH 64]                         | -2,847               | 0,047       | 0,189                       | 5,280                       |
| gi 657196340 | 50S ribosomal protein L7<br>[Acidiphilium angustum]                                          | -3,031               | 0,039       | 0,188                       | 5,326                       |
| gi 499563314 | F0F1 ATP synthase subunit beta<br>[Synechococcus elongatus]                                  | -2,968               | 0,041       | 0,150                       | 6,686                       |
| gi 493585871 | diguanylate cyclase<br>[Frankia sp. EUN1f]                                                   | -2,884               | 0,045       | 0,116                       | 8,630                       |
| gi 398394263 | isocitrate dehydrogenase [NAD] sub 1<br>[Zymoseptoria tritici IPO323]                        | -16,097              | 0,000       | 0,066                       | 15,147                      |
| gi 518290483 | molecular chaperone GroEL [Roseomonas]                                                       | -9,372               | 0,001       | 0,057                       | 17,594                      |
| gi 618851123 | membrane-bound proton-translocating<br>pyrophosphatase<br>[Clostridium tetanomorphum DSM665] | -3,028               | 0,039       | 0,024                       | 40,965                      |



**Figure S1.** Microbial colonies growing on LB incubated at room temperature for two weeks (**A**). Case example of growth restoration in nearby-grown isolates under conditions of extreme pH. A local buffering of the pH of the plate is observed (**B**).



**Figure S2.** Stress tests results data matrix. The growth of the 53 strains isolated from the solar panels under particular stress conditions was compared to that of a control strain (XL1-Blue *E. coli* strain). Green colour (from light to dark) indicates better growth than the control (from slightly to strongly better growth). Symbols '+' indicate cases of growth restoration by another isolate. Two independent experiments were performed for each test. Strains are numbered according to Table S1.



**Figure S3.** Taxonomic diversity of one of the panels (panel 1) sampled in the summer solstice of 2014 as deduced from shotgun metagenomic sequencing.