Supporting information for

Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl

tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of

commercialization

Junlin Zheng²[†], Junhua Zhu^{1,2}[†], Xuan Xu², Wanmin Wang², Jiwen Li², Yan Zhao², Kangjian Tang^{1,2}, Qi Song², Xiaolan Qi², Dejin Kong², Yi Tang¹

1 Department of Chemistry, Fudan University, Shanghai, 200233, China 2 Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai 201208, China.

† co-first author with equal contribution

XRD patterns of H₂ reduced Cu/SiO₂ and Cu/Al₂O₃-SiO₂ catalysts were collected (as shown in Figure 1S), and the Cu particle sizes were calculated by scherrer equation, respectively. After H₂ reduction, the copper particle sizes of Cu/SiO₂ and Cu/Al₂O₃-SiO₂ are 22.40 nm and 19.10 nm, respectively.

Figure S1. XRD patterns of H_2 reduced Cu/SiO_2 (a) and Cu/Al_2O_3 -SiO₂ (b) catalysts.

Figure S2 displays the Py-IR spectroscopy of the Cu/SiO₂ (a) and Cu/Al₂O₃-SiO₂ (b) catalysts desorbed at 200 °C, 250 °C, 300 °C, and 350 °C stepwise. Normally, the peak at 1450 cm⁻¹ and 1540 cm⁻¹ are ascribed to Lewis acidic sites and Brönsted acidic sites, respectively. The Cu/SiO₂ catalyst only has very weak Lewis acidic sites, as indicated by the desorption signal at 200 °C and 250 °C. Whereas, the Cu/Al₂O₃-SiO₂ catalyst possesses stronger Lewis acidic sites, as indicated by the stronger desorption signals at 200 °C and 250 °C, as well as the additional desorption signals at 300 °C.

Figure S2. Py-IR characterization of CuO/SiO₂ (a) and CuO/Al₂O₃-SiO₂ (b) catalysts.

Figure S3a shows the TEM micrograph of spent Cu/Al_2O_3 -SiO₂ catalyst after 1000 h test. The copper particles are not clearly displayed. The spent catalyst was re-calcined at 500 °C for 2 h in the air, and the morphology of CuO particles in TEM micrograph is manifested in Figure S3b. The CuO particles distribute around 20-60 nm. Sintering of Cu particles was not remarkable during long-term operation, which also accounted for the good stability of this Cu/Al₂O₃-SiO₂ catalyst.

Figure S3. TEM micrographs of spent Cu/Al_2O_3 -SiO₂ catalyst: (a) after 1000 h test; (b) re-calcined at 500 °C for 2 h in air.