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Methods: GW Calculations with Effective Environmental Dielectric Screening 

Based on classical electrostatics, the Poisson equation governing an inhomogeneous dielectric 

system is 

∇ ⋅ [𝜀M(𝐫)∇𝑉(𝐫)] =  −4𝜋𝜌(𝐫),                                                     (1)  

where 𝜌(𝐫) is the charge density, 𝑉(𝐫)  is the electrostatic potential, and 𝜀M(𝐫) is the spatially 

varying macroscopic dielectric constant. In a periodic system with the lattice vector, R, the 

Fourier transform of Eq. (1) is 

∑ 𝜀𝐆−𝐆′
M 𝐆 ⋅ 𝐆′𝑉𝐆′ = 4𝜋𝜌𝐆

𝐆′

,                                                       (2) 

where 𝐆 and 𝐆′  are the reciprocal lattice vectors. The Eq. 2 can be rewritten as                     

∑ 𝜀𝐆𝐆′
M 𝑉𝐆′ = 4𝜋𝜌𝐆/𝐺2,

𝐆′

                                                             (3) 

𝜀𝐆𝐆′
M ≡ 𝜀𝐆−𝐆′

M 𝐆 ⋅ 𝐆′/𝐺2.                                                               (4) 

Here, we define the macroscopic static dielectric matrix, 𝜀𝐆𝐆′
M  . On the other hand, the static 

dielectric matrix 𝜀𝐆𝐆′(𝐪; 0) of a system in vacuum is related to its static polarizability 

𝜒𝐆𝐆′(𝐪; 0) as 

𝜀𝐆𝐆′(𝐪; 0) = 𝛿𝐆𝐆′ − 𝑣(𝐪 + 𝐆)𝜒𝐆𝐆′(𝐪; 0),                                            (5) 

where 𝑣(𝐪 + 𝐆) is the bare Coulomb interaction. When the system is nearby a dielectric 

media, the additional screening by the dielectrics can be approximated by the macroscopic 

dielectric polarizability, 𝜒𝐆𝐆′
M (𝐪; 0) .  𝜒𝐆𝐆′

M (𝐪; 0) is then added to the static polarizability 

𝜒𝐆𝐆′(𝐪; 0) of the main system of interest:  

𝜀𝐆𝐆′(𝐪; 0) = 𝛿𝐆𝐆′ − 𝑣(𝐪 + 𝐆){𝜒𝐆𝐆′(𝐪; 0) + 𝜒𝐆𝐆′
M (𝐪; 0)}                          (6) 

=  𝜀𝐆𝐆′
M (𝐪; 0) − 𝑣(𝐪 + 𝐆)𝜒𝐆𝐆′(𝐪; 0).                                         (7) 
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In Eq. 7, the only difference from the static dielectric matrix of Eq. 5 is 𝜀𝐆𝐆′
M (𝐪; 0) instead of 

𝛿𝐆𝐆′, which represents that the vacuum is replaced by the dielectric media where the system is 

located. The 𝜀𝐆𝐆′
M (𝐪; 0) can be obtained from Eq. 4 for the |𝐪⟩ electronic state as  

    𝜀𝐆𝐆′
M (𝐪; 0) = 𝜀𝐪+𝐆,𝐪+𝐆′

M   

= 𝜀𝐆−𝐆′
M (𝐪 + 𝐆) ⋅ (𝐪 + 𝐆′)/|𝐪 + 𝐆|𝟐.              (8) 

The real-space macroscopic dielectric constant profiles [𝜀M(𝐫)] along the perpendicular 

direction to the ML MoS2 are shown in Fig. S1 for the model structures of (a) the ML MoS2 with 

one-side HfO2, (b) the ML MoS2 with both-side HfO2, (c) the ML MoS2 with one-side Au, and 

(d) the ML MoS2 with both-side Au. The dielectric interfaces are chosen to be the top- and 

bottom-most atomic plane of the HfO2 and Au slabs. At the interfaces, the dielectric profiles 

were smoothened with the error functions (β=0.2 Å ). 

 

Figure S1. Real-space environmental dielectric constant profiles. (a-d) The dielectric 

constant profiles along the perpendicular direction to the ML MoS2 for (a) the ML MoS2 with 
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one-side HfO2, (b) the ML MoS2 with both-side HfO2, (c) the ML MoS2 with one-side Au, and 

(d) the ML MoS2 with both-side Au. 

 


