Supplementary Information

Monolayer MoS₂ Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors

Junga Ryou¹, Yong-Sung Kim^{1,2,*}, Santosh KC³ & Kyeongjae Cho^{3,*}

¹Korea Research Institute of Standards and Science, Daejeon 305-340, Korea

²Department of Nano Science, University of Science and Technology, Daejeon 305-350, Korea

³Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA

* Correspondence to: Y.S.K. (email: yongsung.kim@kriss.re.kr); K.C. (email: kjcho@utdallas.edu).

Methods: GW Calculations with Effective Environmental Dielectric Screening

Based on classical electrostatics, the Poisson equation governing an inhomogeneous dielectric system is

$$\nabla \cdot [\varepsilon^{M}(\mathbf{r})\nabla V(\mathbf{r})] = -4\pi\rho(\mathbf{r}), \qquad (1)$$

where $\rho(\mathbf{r})$ is the charge density, $V(\mathbf{r})$ is the electrostatic potential, and $\varepsilon^{M}(\mathbf{r})$ is the spatially varying macroscopic dielectric constant. In a periodic system with the lattice vector, **R**, the Fourier transform of Eq. (1) is

$$\sum_{\mathbf{G}'} \varepsilon_{\mathbf{G}-\mathbf{G}'}^{\mathbf{M}} \mathbf{G} \cdot \mathbf{G}' V_{\mathbf{G}'} = 4\pi \rho_{\mathbf{G}}, \qquad (2)$$

where **G** and **G'** are the reciprocal lattice vectors. The Eq. 2 can be rewritten as

$$\sum_{\mathbf{G}'} \varepsilon_{\mathbf{G}\mathbf{G}'}^{\mathbf{M}} V_{\mathbf{G}'} = 4\pi \rho_{\mathbf{G}} / G^2, \tag{3}$$

$$\varepsilon_{\mathbf{G}\mathbf{G}'}^{\mathbf{M}} \equiv \varepsilon_{\mathbf{G}-\mathbf{G}'}^{\mathbf{M}} \mathbf{G} \cdot \mathbf{G}' / G^2.$$
(4)

Here, we define the macroscopic static dielectric matrix, $\varepsilon_{GG'}^{M}$. On the other hand, the static dielectric matrix $\varepsilon_{GG'}(\mathbf{q}; 0)$ of a system in vacuum is related to its static polarizability $\chi_{GG'}(\mathbf{q}; 0)$ as

$$\varepsilon_{\mathbf{GG}'}(\mathbf{q};0) = \delta_{\mathbf{GG}'} - \nu(\mathbf{q} + \mathbf{G})\chi_{\mathbf{GG}'}(\mathbf{q};0), \tag{5}$$

where $v(\mathbf{q} + \mathbf{G})$ is the bare Coulomb interaction. When the system is nearby a dielectric media, the additional screening by the dielectrics can be approximated by the macroscopic dielectric polarizability, $\chi^{M}_{\mathbf{GG}'}(\mathbf{q}; 0) \cdot \chi^{M}_{\mathbf{GG}'}(\mathbf{q}; 0)$ is then added to the static polarizability $\chi_{\mathbf{GG}'}(\mathbf{q}; 0)$ of the main system of interest:

$$\varepsilon_{\mathbf{GG}'}(\mathbf{q};0) = \delta_{\mathbf{GG}'} - \nu(\mathbf{q}+\mathbf{G}) \{ \chi_{\mathbf{GG}'}(\mathbf{q};0) + \chi_{\mathbf{GG}'}^{\mathsf{M}}(\mathbf{q};0) \}$$
(6)

$$= \varepsilon_{\mathbf{G}\mathbf{G}'}^{\mathsf{M}}(\mathbf{q};0) - v(\mathbf{q}+\mathbf{G})\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q};0).$$
(7)

In Eq. 7, the only difference from the static dielectric matrix of Eq. 5 is $\varepsilon_{GG'}^{M}(\mathbf{q}; 0)$ instead of $\delta_{GG'}$, which represents that the vacuum is replaced by the dielectric media where the system is located. The $\varepsilon_{GG'}^{M}(\mathbf{q}; 0)$ can be obtained from Eq. 4 for the $|\mathbf{q}\rangle$ electronic state as

$$\varepsilon_{\mathbf{GG}'}^{\mathbf{M}}(\mathbf{q}; 0) = \varepsilon_{\mathbf{q}+\mathbf{G},\mathbf{q}+\mathbf{G}'}^{\mathbf{M}}$$
$$= \varepsilon_{\mathbf{G}-\mathbf{G}'}^{\mathbf{M}}(\mathbf{q}+\mathbf{G}) \cdot (\mathbf{q}+\mathbf{G}')/|\mathbf{q}+\mathbf{G}|^{2}.$$
(8)

The real-space macroscopic dielectric constant profiles $[\varepsilon^{M}(\mathbf{r})]$ along the perpendicular direction to the ML MoS₂ are shown in Fig. S1 for the model structures of (a) the ML MoS₂ with one-side HfO₂, (b) the ML MoS₂ with both-side HfO₂, (c) the ML MoS₂ with one-side Au, and (d) the ML MoS₂ with both-side Au. The dielectric interfaces are chosen to be the top- and bottom-most atomic plane of the HfO₂ and Au slabs. At the interfaces, the dielectric profiles were smoothened with the error functions (β =0.2 Å).

Figure S1. Real-space environmental dielectric constant profiles. (a-d) The dielectric constant profiles along the perpendicular direction to the ML MoS_2 for (a) the ML MoS_2 with

one-side HfO_2 , (b) the ML MoS_2 with both-side HfO_2 , (c) the ML MoS_2 with one-side Au, and (d) the ML MoS_2 with both-side Au.