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S| Appendix Materials and Methods

Purification and crystallization of C. albicans Tps2 domains

The tps2NTD gene (residues 1-534) and tps2PD gene (residues 535-833 but refered to
as residues 1-299 throughout this manuscript) from C. albicans strain SC5314 were
cloned from a cDNA library into the pMCSG?7 plasmid using a standard ligation-
independent cloning protocol (1). Tps2NTD residue 120 was mutated to serine since
CTG encodes serine in C. albicans (2) but leucine in E. coli. The pMCSG7 vector
contains an N-terminal hexahistidine affinity tag followed by a TEV protease cleavage
site. Tps2NTD and Tps2PD were expressed in Rosetta 2(DE3) pLysS cells (Novagen)
and were induced with 0.5 mM IPTG at 15 °C. Tps2NTD and Tps2PD proteins were
purified by Ni?*-NTA affinity column chromatography followed by TEV protease
cleavage of the His-tag. The cleaved proteins were reloaded onto the Ni**-NTA column
to eliminate non-cleaved protein and TEV protease, which also contains a histidine tag.
The proteins were further purified by size exclusion chromatography (SEC). To prepare
single residue mutated Tps2PD, a standard site directed mutagenesis protocol was
utilized (3). All mutated DNA was sequenced to assure the proper mutations were made.
Each mutated Tps2PD was purified as described for the wild-type protein. C. albicans
Tps2NTD was concentrated to 20 mg/mL and crystals were grown at 25 °C by the
hanging drop-vapor diffusion method. Protein crystals appeared after one week from
solutions of 1.2 M sodium citrate and 0.1 M cacodylate pH 6.5. C. albicans Tps2PD was
concentrated to 45 mg/mL and co-crystallized with 50 mM trehalose and 50 mM

beryllium fluoride. Crystals were grown at 25 °C by the hanging drop-vapor diffusion



method. Protein crystals appeared after one week from solutions of 0.2 M lithium

sulphate, 0.1 M Tris pH 7.0 and 2.0 M ammonium sulphate.

Protein expression and crystallization of the Tps2PD from C. neoformans and A.
fumigatus

tps2PD genes from A. fumigatus and C. neoformans were codon optimized for E. coli
expression system (GenScript). To prepare the C. neoformans Tps2 D24N mutant, a
standard site directed mutagenesis protocol was utilized (3). These codon-optimized
genes were cloned into a pET-28b kanamycin-resistant vector using the restriction sites
Ncol and Xhol. This vector contained a C-terminal un-cleavable hexahistidine affinity
tag. The vectors were transformed into BL21(DE3) plysS cells (Life Technologies) and
were induced with 0.5 mM IPTG at 15 °C for 16 h. Tps2PD was purified by Ni**-NTA
affinity column chromatography and subsequent SEC using a Superdex S75 column
(GE Healthcare). Purified Tps2PD was concentrated in Buffer (20 mM HEPES, pH 7.5,
100 mM NacCl, 5% glycerol, 5 mM MgCl,, and 1 mM BME) using an Amicon Ultra
concentrator (10K MWCO, Millipore). C. neoformans Tps2PD was concentrated to 12
mg/mL and co-crystallized with 5 mM T6P. Crystals were grown at 25 °C by hanging
drop-vapor diffusion method. Protein crystals appeared after two weeks from solutions
of 0.1 M MgCly, 0.1 M Tris pH 8.5, 20% PEG 400 and 10% PEG 8000. A. fumigatus
crystals were grown at 25 °C by hanging drop-vapor diffusion method using 20 mg/mL
protein. Form 1 crystals appeared after two weeks from solutions of 0.1 M sodium

citrate, pH 5.5, 16% PEG 8000. Form 2 crystals appeared two weeks from solutions of



0.1 M HEPES, pH 7.0, 15% PEG 20000. Form 3 crystals appeared after two weeks

from solutions of 0.1 M HEPES, pH 7.5, 12% PEG 3350.

X-ray data collection and structure determination

Intensity data for the C. albicans Tps2NTD crystals were collected to 2.56 A resolution
at the Advanced Photon Source (APS) using the ID-22 beamline. The Tps2NTD
structure was determined by molecular replacement using Phaser (4) and the structure
of OtsA, the Tps1 from E. coli, (PDB code: 1UQU) (5) as the search model. The
intensity data for the C. albicans Tps2PD and selenomethionine (SeMet)-substituted
Data for the Tps2PD crystals were collected to 2.0 A and 2.12 A resolution, respectively,
at the Advanced Light Source (ALS) using beamlines 5.0.1 and 5.0.2. Experimental
phases were calculated using Phenix Autosol (6) and the model was manually built in
Coot (7). Intensity data for the C. neoformans Tps2PD crystal were collected to 2.15 A
resolution using ALS beamline 5.0.1. The structure was determined by molecular
replacement using the C. albicans Tps2PD as a search model. Data for the A.
fumigatus SeMet-substituted protein crystal and native crystals were collected using the
APS BM-22 and ID-22 beamlines, respectively. Experimental phases were calculated
using Phenix Autosol (6) and the model was manually built in Coot (7). All data were
indexed and scaled using HKL2000 (8). All models were improved using multiple rounds
of refinement using Phenix.refine (9) followed by model rebuilding. Selected statistics of

data collection and refinement are presented in Table S2 and Table S3.



Steady-state kinetics and protein activity assay

To measure the steady-state kinetics of the C. albicans Tps2PD, the initial enzyme
velocity was measured utilizing 3 nM Tps2PD with a gradient concentration of T6P (0.05
mM to 1.5 mM). Similarly, initial enzyme velocities of selected Tps2PD variants were
measured utilizing 50 to 300 nM protein with a gradient concentration of T6P (0.05 mM
to 6 mM). The assays were performed using the EnzChek Phosphate Assay Kit
(Molecular Probes) and absorbance at 360 nm was measured using a SpectraMax M5
plate reader (Molecular Devices). All measurements were performed in triplicate. Data
were fit using the Michaelis-Menten kinetics module as implemented in GraphPad Prism

6.

Cell survival assays and capsule induction in C. neoformans

Cryptococcus neoformans var. grubii strain H99 was used for this study. PCR based
site-directed mutagenesis in combination with the In-Fusion HD cloning system was
used to generate two mutated proteins: a truncated Tps2 protein (682-987) and a Tps2
protein containing a D705N mutation. Each DNA construct was transformed into

a tps2A mutant strain by biolistic transformation (10). To examine cells for capsule
production, a capsule-inducing medium was used as described with minor changes (11).
Briefly, a single colony of yeast was inoculated into 5 mL YPD broth and grown at 30 °C
overnight on a shaking incubator (225 rpm). Cells were harvested by centrifugation at
3000 rpm for 3 minutes and washed twice with 10 mL PBS. The cell pellet was
resuspended in 5 mL diluted Sabouraud (1/1) in MOPS buffer pH 7.3. The cells were

grown overnight under the same conditions and stained the next day with India Ink for



visualization of capsule. A Zeiss Axio Imager A1 fluorescence microscope equipped
with an AxioCam MRM digital camera was used to capture differential interference
contrast (DIC) images under oil immersion at 63X magnification. Images were acquired

and analyzed by ZEN software (Zeiss).



S| Appendix Figures

Figure S1. Superposition of C. albicans Tps2NTD and E. coli OtsA.

Superposition of Tps2NTD and E. coli OtsA, the latter of which is colored grey. Note
the significant difference of the N-terminal Rossmann fold domains (cyan on grey).
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Figure S2. Sequence alignment of C. albicans Tps2NTD.

Primary sequences of C. albicans Tps2NTD (Q5AI14), E. coli OtsA (labelled as
Tps1_EC) (P31677), C. albicans Tps1 (Q92410) and C. albicans Tps3NTD (residues
234-833) were aligned. Identical and highly conserved residues are shaded in the figure.
Red asterisks denote teh catalytic residues of E. coli OtsA. The red pound signs point
out two key residues involved in E. coli OtsA tetramer formation.
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Figure S3. C. albicans Tps2PD activity assays.

(A) Tps2PD selectivity for different substrates. The error bars on the graph represent
the S.E. of three independent measurements. (B) Representative Michaelis-Menten
kinetic curves of Tps2PD WT and selected variants. Protein concentrations of Tps2PD
WT and variants (R67A and E131A) are 3 nM and 50 nM, respectively. The statistical
data were analyzed and figures generated using GraphPad Prism6. The error bars
represent the standard deviation (S.D.) of three independent measurements.
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Figure S4. Sequence alignment of Tps2PD.

Primary sequences of C. albicans Tps2PD (Q5AI14 residues 535-833), A. fumigatus
Tps2PD (AOA084BMG6 residues 673-949) and C. neoformans Tps2PD (Q059G6
residues 681-987) are aligned. Identical and highly conserved residues are shaded and
residues involved in catalysis and substrate binding are denoted by red asterisks.
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Figure S5. Stereoviews of the C. albicans Tps2PD catalytic pocket.

(A) Stereoview of the C. albicans Tps2PD-BeFs-trehalose complex. (B) Walleye
stereoviews of Tps2PD-BeFs-trehalose complex showing the interactions between the
protein and the F3 covalently bound to residue D25. (C) Walleye stereoview of the
interactions of Tps2PD residues with the one glucose moiety of trehalose. (D) Walleye

11



stereoview of the interactions of Tps2PD residues with the second glucose moiety of
trehalose. Panels B through D correspond to panels C-E of Fig. 3 in the main text.
Cap-domain residues are colored pink and core-domain residues are colored cyan.
Trehalose is colored yellow. In each panel interactions are indicated by dashes. For
the sake of clarity not all interactions are shown. See Figure Legend 3 for further details.
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Figure S6. Structure of C. neoformans Tps2PD.

(A) Two views of the structure of the Tps2PD closed conformation structure. The core
domains and cap domains are shown as cartoons and colored cyan and pink. T6P is
shown as atom-colored yellow sticks and the Mg®* ion is shown as an orange sphere.
(B) Superposition of C. albicans Tps2PD and C. neoformans Tps2PD(D24N). C.
albicans Tps2PD is shown in cartoon and colored grey.

13
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Figure S7. Active site of C. neoformans Tps2PD(D24N)-T6P complex.

(A-C) View of C. neoformans Tps2PD interactions with T6P. The cap-domain and core-
domain residues are shown as atom-colored pink and cyan sticks and the magnesium
ion and waters are depicted as spheres and colored orange and red, respectively. T6P
is shown as atom-colored yellow sticks. Interactions between Tps2PD and T6P and the
magnesium ion coordination are shown by dashes.
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tps2A tps2NTDA tps2D705N

Figure S8. Loss of the Tps2 catalytic activity (D705N) impairs cell division and capsule
production.

Cells were grown initially in YPD broth, washed, and resuspended in diluted Sabouraud
(1/10) in MOPS buffer pH 7.3. Cells were grown overnight and stained with India ink.
Large capsules were observed for all strains except for {ps2D705N, which had a small
capsule size and was defective in cell division. The tps2NTDA strain that retains the
catalytic activity but has a deletion of the N-terminal domain had a phenotype similar to
WT.
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Figure S9. Superposition of C. albicans Tps2PD and Brugia malayi Tps2PD.

(A) Superposition of the core domains of C. albicans Tps2PD and Brugia malayi
Tps2PD (residues 206-492). The C. albicans Tps2PD core domain and cap domain are
shown as cartoons and colored in cyan and pink, respectively. The Brugia malayi
Tps2PD is depicted as a grey colored cartoon. (B) Superposition of the cap domains of
C. abicans Tps2PD and Brugia malayi Tps2PD (residues 206-492).
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S| Appendix Tables

S| Appendix Table S1. Michaelis-Menten kinetics of C. albicans Tps2PD and variants

Construct Keat (s™) Km (M) keat!/Km (M™'s™)  Fold change
WT 36.8+1.45 867.4 +69.7 4.2 x 10* 1

D25N ND?

S65A 1.2+ 0.06 3028 +205.5 0.4 x10° 105

R67A ND

E131A 1.1+ 0.03 796.3 + 58.7 1.4 x10° 30

K133A 0.27 + 0.01 5414 +362.5 0.5 x 102 840

E180A 0.45 + 0.004 101.8+5.6 4.4 x10° 9.5

D230A ND

@ND represents no activity detected above detection limit.
* represents standard error.
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Table S2. Data collection and refinement statistics for C. albicans Tps2

S| Appendix Table S2. Data Collection and Refinement Statistics for C. albicans Tps2®

C. albicans Tps2NTD

C. albicans Tps2PD-
BeF;-trehalose

C. albicans Se-Met
Tps2PD-BeF;-

trehalose

Data Collection
Space group P6:22 P2:2424 P2:2:2,
Cell dimensions

a, b, c(A) 98.3, 98.3, 452.8 58.8, 87.2,139.3 59.2,87.2,137.5

a, B, y(°) 90, 90,120 90, 90, 90 90, 90, 90
Resolution (A) 50.0-2.56 (2.60-2.56)  50.0-2.0 (2.03-2.0) 50.0-2.12 (2.16-2.12)
Rmerge " (%) 9.8 (52.5) 5.3 (52.7) 8.0 (31.5)
/ol 21.4 (2.5) 31.5(2.8) 33.0 (5.7)
Completeness (%) 97.6 (92.2) 99.9 (100.0) 99.1 (93.8)
Redundancy 6.1 (5.5) 4.8 (4.7) 6.9 (5.7)
Overall figure of merit (FOM) 0.458

Refinement

Resolution

No. reflections

Rwork ¢ /Rfree d ((%)

No. atoms
Protein
Ligand/ion
Water

B-factor
Protein
Ligand/ion
Water

RMS deviations
Bonds (A)
Angles (°)

Ramachandran (%)
Favored
Outlier

48.9-2.56 (2.65-2.56)
42019
26.6/29.8

7451

98

59.9

47.5

0.006
1.09

94.7
0.9

36.4-2.0 (2.07-2.0)
49177
20.0/24.1

4602
56
395

38.7
29.3
42.8

0.008
1.10

97.4
0

% statistics for the highest resolution shell are shown in parentheses.
b Rmerge = Z|I- ()}/ Z[1|, where 1 is the observed intensity and <I> is the average intensity of several symmetry-

related observations.

° Ruork = Z||Fol-|Fe|l/ Z|Fo, where F, and F. are the observed and calculated structure factors, respectively.
% Riree = Z||Fo|-|F|l/ =|F, for 5% of the data not used at any stage of the structural refinement.
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Table S3. Data collection and refinement statistics for C. neoformans and A. fumigatus

Tps2PD

S| Appendix Table S3. Data Collection and Refinement Statistics for C. neoformans and A. fumigatus Tps2PD®

C. neoformans
Tps2PD(D24N)-T6P

A. fumigatus Tps2PD 1

A. fumigatus Tps2PD 2

A. fumigatus Tps2PD 3

Data Collection

Space group P6,22 P22,2, P1241 P1241
Cell dimensions
a, b, c(A) 63.1,63.1,284.3 45.4,65.5, 118.5 39.8,42.7, 80.2 45.0, 76.8, 83.7
a, B,y (°) 90, 90,120 90, 90, 90 90, 99.5, 90 90, 94.4, 90
Resolution (A) 50-2.15 (2.22-2.15) 50-1.57 (1.63-1.57) 50-1.65 (1.71-1.65) 50-1.89 (1.96-1.89)
Rmergeb 0.088 (0.883) 0.108 (0.637) 0.077 (0.521) 0.07 (0.568)
I/ol 15.6 (2.7) 13.3(3.5) 15.3 (3.6) 15.2 (2.7)
Completeness (%) 99.5 (99.8) 99.9 (99.0) 97.3 (89.0) 98.7 (84.8)
Redundancy 9.9 (9.6) 5.7 (5.6) 3.5(2.2) 3.7 (3.5)
Overall figure of merit 0.537
Refinement

Resolution (A)
No. reflections
Rworkc / Riree ¢ [%]
No. atoms
Protein
Ligand/ion
Water
B-factor
Protein
Ligand/ion
Water
RMS deviations
Bonds [A]
Angles [°]
Ramachandran (%)
Favored
Outlier

43.3-2.15 (2.23-2.15)
19254
23.0/26.7

2412
32
96

53.0
47.0
49.6

0.005
0.71

98.4
0

36.0-1.57 (1.63-1.57)
49835
20.0/23.0

2257

392

19.9

29.7

0.006
1.01

98.6
0

20.6-1.65 (1.71-1.65)
31559
21.9/25.3

2122
1
240

28.6
19.2
38.4

0.007
1.05

97.3
0

31.8-1.89 (1.96-1.89)
44688
20.7/25.0

4344
2
186

45.2
27.4
48.0

0.009
1.15

97.0
0

% statistics for the highest resolution shell are shown in parentheses.
b Rmerge = Z|I- ()|/ Z|1|, where 1 is the observed intensity and <I> is the average intensity of several symmetry-related

observations.

° Ruork = Z||Fol-|Fe|l/ Z|Fo, where F, and F. are the observed and calculated structure factors, respectively.

Riee = Z||F,|-|F.||/ Z|F, for 5% of the data not used at any stage of the structural refinement.
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