SUPPLEMENTAL DATA

Structural and Kinetic Analysis of Miscoding Opposite the DNA Adduct $1, N^6$ -Ethenodeoxyadenosine by Human Translesion DNA Polymerase η

Amritraj Patra[#], Yan Su[#], Qianqian Zhang[#], Kevin M. Johnson, F. Peter Guengerich¹, and Martin Egli¹

From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146

J. Biol. Chem. 291, xxx-xxx, 2016

CONTENTS

FIGURE S1. Steady-state kinetics of incorporation of individual dNTPs opposite $1, N^6 - \varepsilon dA$ by hpol η .

FIGURE S2. Pre-steady-state kinetics of incorporation of individual dNTPs opposite $1,N^6$ - ε dA by hpol η .

FIGURE S3. LC-MS analysis of extension products.

Table S1. Predicted CID fragment ions of frameshift product (pAT_GAGG) from hpol η extension of the 18-mer primer sequence.

FIGURE S1. Steady-state kinetics of incorporation of individual dNTPs opposite $1,N^6-\varepsilon dA$ (Substrate C) by hpol η . *A*, dATP; *B*, dCTP; *C*, dGTP; *D*, dTTP. See Table 3 for estimated parameters.

FIGURE S2. Pre-steady-state kinetics of incorporation of individual dNTPs opposite 1, N^6 - ε dA (Substrate A) by hpol η . A, dATP; B, dGTP; C, dCTP; D, dTTP.

Substrate A 5⁻-(FAM)TCG TAA GCG TCA T -3⁻ 3⁻AGC ATT CGC AGT A(ɛdA)C ACT-5⁻

FIGURE S3. LC-MS analysis of extension products. See Table 5 for calculated results.

-31

Table S1. Predicted CID fragment ions of frameshift product (pAT_GAGG) from hpol η extension of the 18-mer primer sequence.

LC-MS analysis of products of extension of primer (opposite template $1,N^6-\varepsilon dA$, Substrate C-U, Table 1) by hpol η in the presence of all four dNTPs. (Underscore indicates a deletion in product.) See Fig. 1*B*.

		m/z,	m/z,
n	Charge	a-B ion	w ion
1	-1		346.21
2	-1	490.29	675.42
	-2	244.64	337.21
3	-1	794.48	988.64
	-2	396.74	493.81
4	-1	1123.69	1317.85
	-2	561.34	658.42
5	-1	1436.9	1622.04
	-2	717.95	810.52