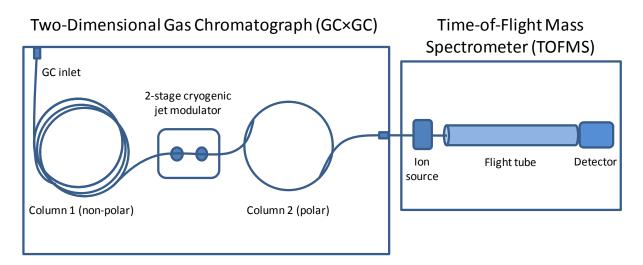
Supporting Information for "Identification of New and Distinctive Exposures from Little Cigars"

Theodore P. Klupinski,*^{,†} Erich D. Strozier,[†] David A. Friedenberg,[†] Marielle C. Brinkman,[†]

Sydney M. Gordon,[†] Pamela I. Clark[‡]

[†] Battelle, 505 King Avenue, Columbus, Ohio 43201


[‡] School of Public Health, Department of Behavioral and Community Health, Tobacco Center of Regulatory Science, University of Maryland, College Park, Maryland 20742

* To whom correspondence should be addressed: Tel: 614-424-7595. E-mail:

klupinskit@battelle.org.

Product Name	Complete Text on Front of Package	
Swisher Sweets Original	Swisher Sweets; Little Cigars; Swisher Sweets; Filtered Little Cigars; 20; Smooth • Sweet • Satisfying	
Swisher Sweets Cherry	Swisher Sweets; Little Cigars; Swisher Sweets; Sweet Cherry; Filtered Little Cigars; 20; Smooth • Sweet • Satisfying	
Cheyenne Full Flavor	20 Cigars; Cheyenne; Full Flavor; 100's; Made in U.S.A.	
Cheyenne Menthol	20 Cigars; Cheyenne; Menthol; 100's; Made in U.S.A.	

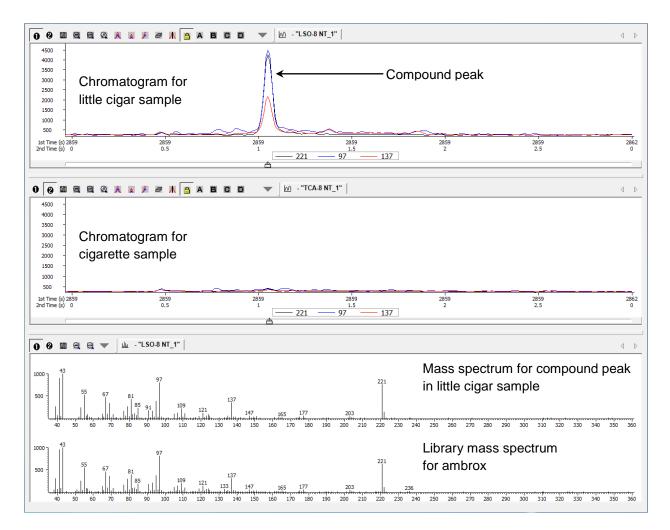
Table S1. Package Information for Little Cigar Products Tested

Figure S1. Schematic illustration of two-dimensional gas chromatograph–time-of-flight mass spectrometer.

Table S2. Acquisition Parameters for Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry for Mainstream Smoke Analyses

Two-Dimensional Gas Chromatography				
1st-dimension column	100% dimethylpolysiloxane: 30 m, 250 µm i.d.,			
	1.0 µm film			
2nd-dimension column	50% phenyl polysilphenylene-siloxane: 1 m,			
	100 μm i.d., 0.1 μm film			
Inlet temperature	250 °C			
Main oven temperature program	45 °C (1.5 min hold)			
	45 °C – 100 °C @ 20 °C/min			
	100 °C – 270 °C @ 3 °C/min; hold 1 min			
	270 °C – 320 °C @ 20 °C/min, hold 16 min			
Secondary oven temperature	80 °C (1.5 min hold)			
program	80 °C – 275 °C @ 3 °C/min			
	275 °C – 330 °C @ 20 °C/min, hold 11 min			
Modulation temperature	20 °C above 1st-dimension column temperature			
Modulation period	3 seconds			
Carrier gas (He) flow rate	1.5 mL/min constant flow			
Injection volume	1 μL splitless for 60 seconds			
Time-of-Flight Mass Spectrometry				
Transfer line temperature	290 °C			
Ion source temperature	200 °C			
Detector voltage	Tune voltage + 200V			
Data rate, range	100 spectra/sec, 35–600 amu			
Mass resolution	Unit resolution			

Methods for Confirmation Analysis


Confirmation analysis was performed for ambrox, 3-methylbutanenitrile, and 4methylimidazole, the tentatively identified New/Distinctive Exposure Candidates that were selected as described in the "Results" section. To achieve this objective, aliquots of some concentrated extracts were spiked with authentic standards of the compounds and analyzed by either GC×GC-TOFMS or LC–MS/MS. GC×GC-TOFMS analysis was used for confirmation analysis of ambrox and 3-methylbutanenitrile, which have low to moderate polarity. LC– MS/MS analysis was used for confirmation analysis of 4-methylimidazole, which is polar and alkaline.

Confirmation studies were performed by concurrent analyses of the spiked samples and nonspiked (i.e., "native") samples. The native samples were modified as needed using co-solvents and internal standards to yield compositions equivalent to the spiked extracts other than the inclusion of the authentic materials. A compound was considered a confirmed detection if the retention times, peak shapes, and mass spectra for the native extracts were consistent with those for the spiked extracts and spiked blanks. When the presence of a compound in a sample was confirmed, the peak responses for the paired spiked and native solutions were evaluated to provide a semi-quantitative estimate of the concentration in the native solution, assuming a linear response factor. In addition, an approximate detection limit was determined from the chromatogram for each spiked solution using interpolation to estimate the minimum concentration needed to yield a signal-to-noise ratio sufficiently large to enable compound detection. For a given compound, the largest value for any calculated approximate detection limit was reported as the estimated detection limit.

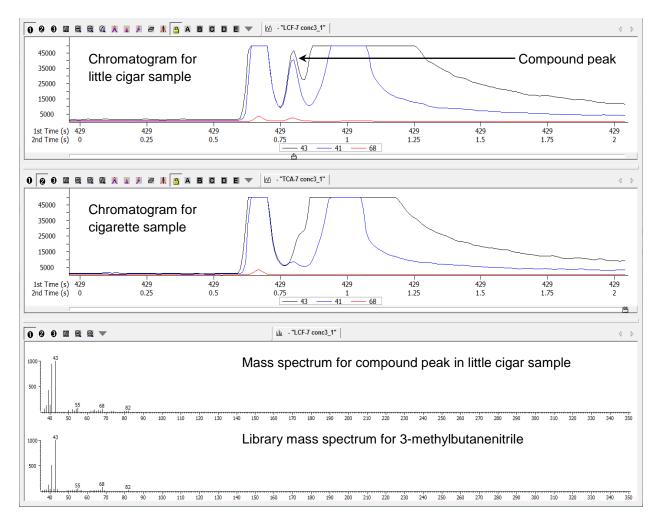

Concentrated stock solutions were prepared from authentic standards of the three compounds. For each of ten concentrated extracts—one from each of the eight tobacco products tested and two blanks—a 40- μ L aliquot was spiked with the internal standard acenaphthene- d_{10} and stock solutions of ambrox and 3-methylbutanenitrile, yielding spiked concentrations of 0.5 μ g/mL for ambrox and 1 μ g/mL for 3-methylbutanenitrile. The spiked and native solutions were analyzed by GC×GC-TOFMS for confirmation analysis using the same method employed in the original sample analyses. Similarly, for each of ten concentrated extracts—one from each of the eight tobacco products tested and two blanks—an 8- μ L aliquot was diluted 120-fold into 2/98 (volume/volume) methanol/water and spiked with a stock solution of 4-methylimidazole, yielding spiked concentrations of 7.5 ng/mL for cigarette samples and 30 ng/mL for little cigar samples and blanks. The spiked and native solutions were analyzed by LC–MS/MS for confirmation analysis using the analytical conditions indicated in Table S3.

Table S3. Acquisition Parameters for Liquid Chromatography–Tandem Mass Spectrometry for Mainstream Smoke Analyses

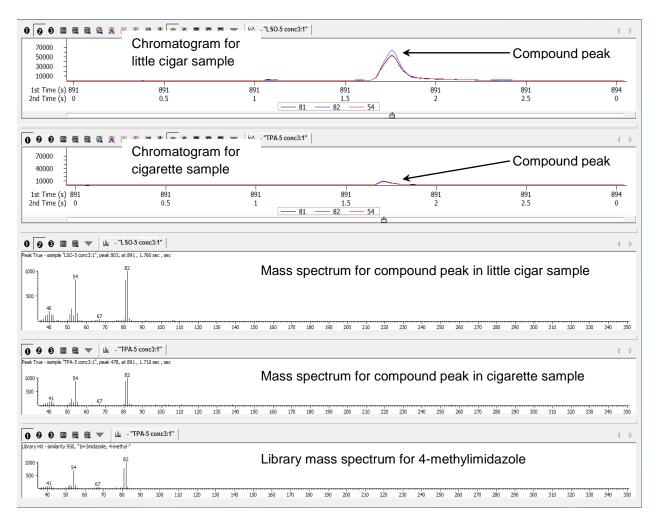

Ultra Perfomance Liquid Chromatography (UPLC)					
UPLC system	Waters Acquity H-Class				
UPLC column	Restek Pinnacle DB PFP (Pentafluorophenyl) Propyl, $2.1 \times 100 \text{ mm}, 1.9 \mu\text{m}$				
Column temperature	40 °C				
Mobile phases	A: 2 mM each of formic acid and ammonium formate in water B: 2 mM each of formic acid and ammonium formate in methanol				
Gradient	Time (min)	Flow Rate (mL/min)	% Mobile Phase B		
	0	0.4	2		
	1	0.4	2		
	5	0.4	42		
	5.01	0.5	100		
	6.5	0.5	100		
	6.51	0.4	2		
	9	0.4	2		
Injection volume	25 μL				
Run time	9 minutes				
Tandem Mass Spectrometry					
Mass spectrometer	Micromass Quattro Premier, triple quadrupole				
Ionization method	Electrospray (Positive Mode)				
Capillary voltage	0.2 kV				
Source temperature	100 °C				
Desolvation temperature	500 °C				
Desolvation gas	Nitrogen, 1000 L/hr				
Collision cell pressure	$\sim 2 \times 10^{-3}$ mbar				
Collision gas	Argon				
Multiple reaction monitoring (MRM) ion transitions	1° (quantifier): 83 > 56 2° (qualifier): 83 > 42				
Cone voltage	35 V				
Collision energies	15 eV for all ion transitions				

Figure S2. Example of extracted ion chromatograms (m/z 221, 97, and 137) and mass spectra for detection of ambrox by GC×GC-TOFMS.

Figure S3. Example of extracted ion chromatograms (m/z 43, 41, and 68) and mass spectra for detection of 3-methylbutanenitrile by GC×GC-TOFMS.

Figure S4. Example of extracted ion chromatograms (m/z 81, 82, and 54) and mass spectra for detection of 4-methylimidazole by GC×GC-TOFMS.