I-bodies: human single domain antibodies that antagonize chemokine receptor CXCR4

Katherine Griffiths^a, Olan Dolezal^b, Benjamin Cao^c, Susan K. Nilsson^c, Heng B. See^{d,e}, Kevin D.G. Pfleger^{d,e,f}, Michael Roche^{g, h}, Paul R. Gorry^{h,i,j,k}, Andrew Pow^l, Katerina Viduka^m, Kevin Limⁿ, Bernadine G.C. Lu^o, Denison H.C. Chang^p, Thomas Murray-Rust^a, Marc Kvansakul^q, Matthew A. Perugini^q, Con Dogovski^r, Marcel Doerflinger^q, Yuan Zhang^s, Kathy Parisi^q, Joanne L. Casey^t, Stewart D. Nuttall^b and Michael Foley^{a,q}*.

Supplementary Data

FIGURE LEGENDS

S1. Biophysical characterization of i-body scaffold

(A.) Circular dichroism spectroscopy of 21H-5 at 20 °C and 80 °C, and at 20 °C after repeated heating to 80 °C (Recool 1-4). (B.) Thermal stability of crude periplasmic extract of AD5G8-5. Lane 1: untreated, Lane 2: heat treated at 40 °C, Lane 3: heat treated at 50 °C, Lane 4: heat treated at 60 °C, Lane 5: heat treated at 70 °C, Lane 6: heat treated at 80 °C, Lane 7: heat treated at 90 °C, Lane 8: heat treated at 99 °C. Arrow indicates AD5G8-5. (C.) Retention of active AD5G8-5 protein following incubation at various pHs for 4 weeks at 4 or 37 °C. (D.) Analytical ultracentrifugation of 21H-5 and AD5G8-5. The quality of the c(M) distribution best-fits are demonstrated by the random distribution of residuals obtained for each analysis.

S2. Analysis of a shark : i-body loop graft clone, 23B-2.

I-body clone 23B-2 was engineered by replacing the 21H-5 residues ⁸²EDGS⁸⁵ with the V_{NAR} clone 1A-7 residues ⁸⁸SDAMSNYSYPIS⁹⁹. V_{NAR} clone 1A-7 binds the monoclonal antibody 5G-8. (A.) Protein expression and purification of 23B-2 showed that the resulting recombinant protein was soluble by size-exclusion analysis. (B.) ELISA revealed that specificity for 5G-8 was transferred to clone 23B-2, as compared with the original V_{NAR} clone 1A-7. 23B-2 did not bind lysozyme, which was included as a negative control.

S3. (A. - G.) Kinetic data set collected for i-bodies binding to immobilized CXCR4. I-bodies were diluted three-fold and injected (A.) from 2187 nM to 27 nM, (B. to G.) 81 nM to1 nM. (A.) ADCX-99 [a. inset shows fit of the responses at equilibrium (plotted against injected i-body concentration) to simple binding isotherm]. (B.) AM1-126, (C.) AM1-320 (D.) AM4-272, (E.) AM3-523, (F.) AM4-746, (G.) AM4-1121, Binding responses (black sensorgrams) are overlayed with fits of a simple 1:1 kinetic interaction model (orange lines). (H. - L.) SPR experiments showing binding competition between CXCL12 ligand and various i-bodies. (H.) Sensorgram showing scheme of the SPR based competition assay. I-body injection (#1) was followed by CXCL12 ligand injection (#2). Injection of running buffer (RB) prior to CXCL12 ligand injection provides a baseline (no inhibition) response (black sensorgram). Sensorgrams shown in green represent injection controls used for baseline-response subtraction: light green = i-body + RB, dark green = RB + RB. Panels (I. - L.) show appropriately subtracted SPR responses arising from CXCL12 ligand binding to CXCR4 with no pre-bound i-body (black sensorgrams) or with pre-bound i-body injected at 50 nM (red sensorgrams) or 200 nM (blue sensorgrams) (I.) AM1-126 (J.) AM3-114 (K.) AM4-272 (L.) AM3-523. CXCL12 ligand was injected at 13 nM.

S4. Inhibition of entry of viruses in the presence of CXCR4-binding i-bodies.

(A.) % inhibition of entry of reporter viruses pseudotyped with VSVG by CXCR4 i-bodies. (B.) % inhibition of entry by CXCR4 i-bodies of HIV reporter viruses pseudotyped with the CCR5-using YU-2 Env. Error bars show s.d.

S1.

S-4

S4.

	Native
Data collection	1100110
	D 01
Space group	P 21
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	23.85, 107.33, 41.75
α, β, γ (°)	90.00, 99.57, 90.00
Wavelength (Å)	0.9537
Resolution (Å)*	40.00-1.9 (2.00-1.90)
$R_{\rm sym}$ or $R_{\rm merge}$ *	0.107 (0.852)
<i>Ι</i> / σ <i>I</i> *	15.2 (2.8)
Completeness (%)*	99.9 (100)
Redundancy*	7.6 (7.6)
Refinement	
Resolution (Å)	41.23-1.4
No. reflections	17174
$R_{\rm work} / R_{\rm free}$	0.172/0.199
No. atoms	
Protein	1521
Ligand/ion	1
Water	163
<i>B</i> -factors	

Table S1. 21H-5 structure data collection and refinement statistics

*Values in parentheses are for highest-resolution shell.

Table S2. Sequences of peptides and V_{NAR} s isolated against mAb 5G-8, compared with the sequence of i-body AD5G8-5. AYP or SYP is a common motif among these binders.

Binder type	Clone	Peptide ¹ or CDR3 ² sequence	Reference
Peptide	M1	¹ DRHSRIVILMPL <u>AYP</u>	(1)
Peptide	E2	¹ EDENTLQH <u>AYP</u> ID	(1)
V _{NAR}	1A-7	² YFSDAMSNY <u>SYP</u> IPGEKG	(2)
V _{NAR}	1A-11	² DYSPSCY <u>SYP</u> SLESAVEG	(2)
V _{NAR}	1A-14	² SAALSPN <u>SY</u> YCPSCLEKG	(2)
i-body	AD5G8-5	² THSANTK <u>SYP</u> TEDFT	-

REFERENCES

- Coley, A. M., Campanale, N. V., Casey, J. L., Hodder, A. N., Crewther, P. E., Anders, R. F., Tilley, L. M., and Foley, M. (2001) Rapid and precise epitope mapping of monoclonal antibodies against *Plasmodium falciparum* AMA1 by combined phage display of fragments and random peptides. *Protein Eng.* 14, 691-698
- 2. Simmons, D. P., Streltsov, V. A., Dolezal, O., Hudson, P. J., Coley, A. M., Foley, M., Proll, D. F., and Nuttall, S. D. (2008) Shark IgNAR antibody mimotopes target a murine immunoglobulin through extended CDR3 loop structures. *Proteins* **71**, 119-130