4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6

Sriram Jayabal^{1,2}, Hui Ho Vanessa Chang³, Kathleen E. Cullen³, and Alanna J. Watt^{1,*}

Supplementary Information

Supplementary Figure 1. 4-AP does not act on presynaptic currents to increase Purkinje cell firing precision. (A) A cocktail of synaptic blockers of fast excitatory (AMPA, NMDA) and inhibitory (GABA_A) transmission did not alter firing precision (as measured by CV, P = 0.14), while the further addition of 4-AP increased the regularity of Purkinje cell firing (P = 0.0008; N = 10 Purkinje cells from N = 3 SCA6^{84Q/84Q} mice; paired Student's t test, Bonferroni corrected, significance level α = 0.025). (B) Synaptic blockade increased firing rate in 7-month-old SCA6^{84Q/84Q} mice (grey markers, P < 0.0001), which is not altered after the subsequent application of synaptic blocker cocktail + 4-AP (red markers, P = 0.14). Paired Student's t test, Bonferroni corrected, significance level α = 0.025. ** P < 0.001; *** P < 0.0001.

Supplementary Figure 2. 4-AP administration does not affect weight of mice. Mice were weighed on alternating days as a means of assessing their health either with 4-AP in their drinking water or without. Weight was indistinguishable across genotype and condition at all days measured (WT with vehicle: unfilled circles, N = 11; WT + 4-AP: black circles, N = 11; SCA6^{84Q/84Q} with vehicle: orange diamonds, N = 9; SCA6^{84Q/84Q} + 4-AP: red diamonds, N = 9; ANOVA fit model, $F_{27,330} = 0.7209$, P = 0.847; not significantly different at 3 months, data not shown, P = 0.36).