Supporting Information

TABLE OF CONTENTS	Page
1. Supporting Results	S2
2. Supporting Tables	
Table S1. Biotransformation of L-Lys to L-ACL.	S 3
Table S2. Enzymatic formation of A-503083 B (2) from 12.	S 3
Table S3. Codon adaptation index for genes involved in 1 biosynthesis	S 4
3. Supporting Figures	
Figure S1. Analysis of the 1 biosynthetic gene cluster.	S5
Figure S2. Development of a genetic system within the 2 -producing strain.	S 6
Figure S3. Biotransformation with heterologous expression of <i>capV</i> and <i>capU</i> .	S 7
Figure S4. Amino acid sequence alignment of select condensation domains of nonribosomal	S 8
peptide synthetases.	
Figure S5. Recombinant CapW, CapV and CapU production.	S 8
Figure S6. Nonenzymatic hydrolysis or lactamization of 14.	S9
Figure S7. Architecture of the NRPS subcluster.	S9
4. Supporting References	S10

1. Supporting Results

The development of a genetic system within the 1-producing strain. We had previously prepared several high-, low-, or non-producing strains by random chemical mutagenesis, and expression analysis with these strains revealed a set of genes (orfs 7-28) within the 65-kb sequenced region that are only expressed in low-or high-producing strains at the onset of 1 production.^[S1] Strains representing each production type were subjected to PCR analysis for amplification of every predicted orf within the sequenced locus to reveal that orfs 1-28 are intact in both producing and non-producing strains alike (Supporting Information, Figure S1). This includes the NRPS-encoding genes, orf26 and orf27. In contrast orfs 29-38 were only present in the producing strains. The genomic DNA for each strain type was subsequently digested with AseI and subjected to pulse field gel electrophoresis, yielding two large DNA fragments (610 and 680-kb DNA) that each hybridized with a DIG-labelled orf8 probe for all of the producing strains. In contrast while the 680-kb DNA fragment was observed, the 610-kb DNA fragment was not detected in representative nonproducing strains. These results are consistent with the 1-producing strain harboring multiple copies for several if not all of the required structural genes. The reason for complete loss of production in the non-producing strain is still unclear but is proposed to be a result of regulation malfunction.

2. Supporting Tables

Sample ^a	[L-Lys]	[FMOC-ACL]	Sample	[L-Lys]	[FMOC-ACL]
-	(µg/mL)	(µg/mL)	-	(µg/mL)	$(\mu g/mL)$
500 mL LM	100	2.7	150 mL LM	100	4.9
culture	200	5.5	culture	200	5.7
	300	2.4		300	2.3
	400	2.0		400	1.7
	500	2.0		500	3.3

Table S1. Biotransformation of L-Lys to L-ACL.

^aAbbreviations are LM, liquid media; FMOC-ACL, L-α-amino-ε-caprolactam derivatized with FMOC.

Table 52. Enzymatic formation of 2 from 12.										
	Reaction ^a									
Variable	1 ^b	2°	3 ^d	4	5	6	7	10	11	12
MgCl ₂	-	+	-	-	+	+	+	+	+	-
ATP	+	+	-	-	+	+	+	+	-	+
CoA	-	+	-	-	+	-	+	+	+	+
L-Lys	+	+	-	+	+	+	+	+	+	+
Svp	-	+	-	-	+	-	+	+	+	+
CapU	-	+	-	-	+	+	-	+	+	+
CapV	-	+	-	-	-	-	-	-	-	-
CapW	+	+	+	+	+	+	+	-	+	+
L-ACL	-	-	+	-	-	-	-	-	-	-
Yield (%) ^e	nd	37	95	nd	32	5	nd	nd	nd	nd

Table S2. Enzymatic formation of 2 from 12.

^aAll reactions contained 50 mM Tris-HCl (pH = 7.5) and substrate 12 with (+) or without (-) indicated variable. Concentrations of each component are provided within the experimental procedures.

^bCorresponds to Fig. S6B, trace *b*.

^cCorresponds to Fig. S6B, trace *c*.

^dCorresponds to Fig. S6B, trace *d*.

^eBased on amount of **12** converted to product **2**; nd, not detected.

Gene ^a	Length	CAI ^b	CAI ^c	$G+C^d$
capA	924	0.521	0.464	77.6
capB	1671	0.597	0.473	84.0
capC	951	0.646	0.491	88.3
capD	975	0.779	0.650	92.9
capE	1404	0.690	0.598	90.4
capF	951	0.592	0.469	85.2
orf15	1200	0.697	0.533	88.3
capG	1158	0.717	0.594	89.9
capH	1239	0.654	0.548	87.4
capI	264	0.529	0.478	77.3
capJ	2286	0.730	0.601	91.2
capK	738	0.595	0.476	82.9
capL	507	0.644	0.508	85.8
capM	870	0.709	0.549	89.7
capN	2034	0.649	0.502	87.9
capO	1839	0.717	0.524	91.0
capP	915	0.503	0.411	79.0
capS	780	0.559	0.442	81.2
capT	1890	0.655	0.535	87.0
orf16	402	0.487	0.336	79.1
capU	1410	0.495	0.337	77.3
capV	3312	0.401	0.414	69.1
capW	1209	0.617	0.544	86.4
orf17	546	0.635	0.527	85.2

Table S3. Codon adaptation index for genes involved in 2 biosynthesis.

^aGenes required for 12 biosynthesis are highlighted in red. The *capP* gene encodes an ATP:2 phosphotransferase that confers self-resistance. The gene *capT* encodes a putative C-methyltransferase that modifies the L-ACL following incorporation into **12**. ^bReferenced against the codon usage table for *Streptomyces griseus* sups. griseus.

^cReferenced against the glucokinase gene from *Streptomyces griseus* sups. griseus (Genbank accession no. AP009493). d G+C content at the third position of the codon.

3. Supporting Figures

Figure S1. Analysis of the **1** biosynthetic gene cluster. A) Genetic architecture of the open reading frames (*orfs*) from the sequenced region encompassing 65-kb DNA. Filled *orfs* (7-28) are highly expressed during the onset of **1** production and hence are probably required for biosynthesis. B) PCR amplification of each of the 38 *orfs* using template DNA from a high-producing strain (HP), a low-producing mutant strain (37-3), and two non-producing strains (35-4 and 37-9). C) Pulse-field gel electrophoresis analysis of total genomic DNA isolated from the indicated strains and subjected to *AseI* digestion. Lane M (marker) is *Saccharomyces cerevisiae* chromosomes (Bio Rad), and Southern blot analysis was performed using *orf8* as a probe (middle panel) or *orf37* (right panel).

Figure S2. Development of a genetic system within the producing strain of 2. A) Strategy to prepare an in-frame deletion of *capU*. B) Southern blot analysis of genomic DNA isolated from the $\Delta capU$ mutant strain (II) or wild-type strain (III) and digested with *XhoI*. Lane I, DNA marker.

Figure S3. Biotransformation of L-Lys upon heterologous expression of *capV* and *capU*. (A) Modification of ACL with Fmoc. Fmoc-OSu, Fmoc *N*-hydroxysuccinimide ester. HPLC analysis of Fmoc-ACL production including (B) Fmoc-OSu control, (C) L-ACL standard modified by Fmoc-OSu, (D) Fmoc-OSu modified extract from *S. lividans* TK64 with empty vector (pUWL201pw), (E) Fmoc-OSu modified extract from *S. lividans* TK64 pUWL201pw-*capUV* revealing a peak with retention time 5.455 min that co-elutes with Fmoc-OSu modified L-ACL. (F) The observed mass spectrum for the product at retention time = 5.455 min (expected m/z = 350.16 for C₂₁H₂₂N₂O₃).

	1 10	20	30	40	50	60
TycC6	KOAYYPVSSA	KRMYILDQFEGV	GISYNMPST	ILIE <mark>G</mark> KLERTE	RVEAAFORLI	ARHESLRTSF
SrfA-C	VQDMYYLSPM	EGMLFHAILNPG	QSFYLEQITM	KVKG SLNIK(LEESMNVIM	DRYDVFRTVF
VibH	MLLA	KPFWQRHLAYPH	INLDTVAHSI	RLTGPLDTTI	LLRALHLTV	SEIDLFRARF
CapV		ILEVARAHPH	SRCAG INQ LF	VLKG PVE PAR	RLRAAWRNLQ	YRHDALRTIF
CapU	VPPGQ LRWSAQ	EQ MWFREQ TGGD	PSEHNLVYRF	LLHGQVDDDH	RLVAALRATV	SRQSVLSAPQ
	70	80	90	100	110	120
TvcC6	AVVNGEP	VONIH-EDVP	FALAYSEVTE	EEARELVS-S	SLVOPFDLEV	APLIRVSLLK
SrfA-C	IHEKVKRPV0 V	VLKKROFHIEEID	LTHLTG SEOT	TAKINEYKEOI	KIRGFDLTR	DIPMRAAIFK
VibH	SAOGELY	WHPFSPPIDY	ODLSIHLEAF	PLAWRO IEOI	LORSSTLID	APITSHO VYR
CapV	SEOGSOW	RORVTRMTSE	LVIRGAAIDE	RTMRETVGR	RVEGFDLAG	GALARAELVL
CapU	GRHATVP	RADFHVR	TVDATGSAPE	SVLSEVLRT	SAHPLTLEN	QLLARATLVH
09405835	130	15	0 16	0 17	na -	180
TycC6	IGEDRYVLFTD	HHSISDGVSSGI	LLAEWVQ LYQ	GDVL-PELRI	QYKDFAVWQ	QEF SQ SAAFH
SrfA-C	KAEESFEWWWS'	WHHIILDGWCFGI	VVQDLFKVYN	IALREQKPYSI	PPVKPYKDY	IKWLEKQDKQ
VibH	LSHSEHLIYTR.	AHHIVLDG YG MML	FEQRLSQHYO	SLLSGQT	PTAAFKPYQ	SYLEEEAAYL
CapV	GRENTHILVLS	HHSVVDGYSLGV	LWDDLCQAYN	IDPGD-APLPT	TOOGEF AQQQ	SARRIV
CapU	CSEDRRLLVWT	HQAAWDARSVAI	FMREVAAAYO	STTAGRDLEI	SYSDFSHWQ	YEMLSRRGDA
	190 200	210	220	230	240	250
TvcC6	KOEAYWLOTFAL	DDIPVLNLPTDFT	RPSTO SFAGE	OCTIGAGKAI	TEGLHO	LAO ATGTTLY
SrfA-C	ASLRYWREYLE(GFEGOTTFAEO-R	KKOKDGYEPK	ELLFSPSEAR	TKAFTE	LAKSOHTTLS
VibH	TSHRYWODKOF	WQGYLREAPDLTL	TSATYDPOLS	HAVSLSYTL	ISQ LNHLLLK	LANANQ IGWP
CapV	RAKEAALTIRS	RYPKALDSPAD-T	RPRPHHVDLG	GIMLRWGIVE	SGRLAA	RAGEEGLTLY
CapU	LRKWWSANQYS(GVSLPPDRPRRDR	GDDGPLRGLT	SARICADVA:	SGVTSALAE	VGRAVGVDVP
	260	270	280	290	300	310 313
TycC6	MVLLAAYN-VL	LAKYAGQEDIIVG	TPITGRSHAD)LÉPIVGME	VNTLAMENK	PQR
SrfA-C	TALQAVWS-VL	ISRYQQ SGDLAFG	TVVSGRPAE I	KGVEHMVGLE	INVVPRRVK	LS
VibH	DALVALCALYL	ESAEPDAPWLW	LPFMNRWGSV	/AANVPGLI	IVNSLPLLRL	FAQQTS
CapV	MVLLAAYRSAL	EGKGLLSPDAPVW	SPMSGRVSSC	FSRSVGLE	MNLVPVFGS	IARAPEGE
CapU	TVVFGLLA-LL	VSRWNQQDEVTIG	WTGDTRPGEQ	FGDVI <mark>G</mark> PH	SNVLPVSIS	IDPAAEVP

Figure S4. Amino acid sequence alignment of select condensation domains of nonribosomal peptide synthetases. The alignment includes TycC6 involved in tyrocidine biosynthesis from *Brevibacillus brevis* (amino acids 5206-5496 of accession no. O30409); SrfA-C involved in surfactin biosynthesis from *Bacillus subtilis* (amino acids 9-309 of accession no. CAA51224); VibH involved in vibriobactin biosynthesis from *Vibrio cholera* (amino acids 1-290 of accession no. AAD48879); CapV (amino acids 1-281 of accession no. BAJ19067); and CapU (amino acids 55-357 of accession no. BAJ19067).

Figure S5. Recombinant CapV, CapU_AT, and CapW. (A) SDS-PAGE analysis of partially purified His6-CapV (lane 1, expected MW of 48.2 kD); (B) SDS-PAGE analysis of partially purified His6-CapU (lane 1, expected MW of 114.4 kD) expressed from pET30Xa in *E. coli* BL21(DE3). In both cases the engineered N-terminal His6-tag contributes ~5 kD to the predicted native molecular weight. (C) SDS-PAGE analysis of partially purified MBP-CapU_AT (lane 1, expected MW of 125.1 kD) expressed from Pdb.His.MBP in *E. coli* BL21(DE3). The engineered N-terminal MBP-tag contributes ~42.5 kD to the predicted native molecular weight. (D) SDS-PAGE analysis of partially purified His6-CapW (lane 1) expressed from pXY200 in *S. lividans* TK24 (expected MW of ~44 kD; the engineered N-terminal His6-tag contributes ~1 kD to the predicted native molecular weight).

Figure S6. Nonenzymatic lactamization/hydrolysis of **14**. (A) Structure of the surrogate substrate **14** and the nonezymatic formation of L-ACL, L-Lys, and pantetheine. (B) Time dependence of the nonenzymatic reaction of **14**. The inset depicts a secondary plot for later time points during the reaction ([**14**] < 0.65 mM), which displays a linear relationship that is consistent with a pseudo-first order reaction. (C) Nonenzymatic reaction of **14** detected by sulfhydryl formation including i) control reaction (no enzyme); ii) CapU; iii) CapU and N-terminal His-tagged CapV; and iv) CapU and C-terminal His-tagged CapV. (D) Nonenzymatic reaction of **14** detected by sulfhydryl formation including i) control (no CapW); ii) CapW; and iii) CapW and **12**.

Figure S7. Organization of the genetic locus encompassing the **2** biosynthetic gene cluster. A close-up view of the region between *capT* and *orf18* demonstrating that the amide bond forming catalysts (*capU* and *capW*) are flanked by two *orfs* encoding putative transposases and long intergenic regions.

4. Supporting References

[S1] M. Funabashi, K. Nonaka, C. Yada, T. Suzuki, T. Suzuki, Y. Ogawa, M. Hosobuchi, Y. Fujita, M. Kizuka, T. Shibata, Actinomycetologica 2009, 23, 46-50.