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SUPPLEMENTARY FIGURES 
 
 

 
Supplementary Figure 1 
 
The PSF for a single, freely rotating fluorophore.  (a) The theoretical PSF of a 
freely rotating fluorophore imaged with TIRF microscopy in focus and close to the 
coverslip, as reported previously1.  For its calculation, we used the experimental 
parameters relevant for the experiments with Cy3 reported in the main paper 
(Methods).  The effective pixel size was 28 nm.  Here we used a total photon number 
of 10,000 and assumed absence of photonic background.  For the EMCCD parameters 
(Supplementary Note), we used a gain of 80 and a constant signal offset of 1,000.  (b) 
For comparison, a 2D Gaussian plus-a-constant-background PSF with parameters 
obtained by using GME (Methods, Supplementary Note) on the image in a.  (c) 
Relative error between the PSFs in a and b.  Everywhere in the image, the 2D-
Gaussian-plus-a-constant-background approximates the theoretical PSF of a freely 
rotating fluorophore with discrepancies of only a few per cent. Note that the 
discrepancies are symmetric about the centre of the PSF.  Note also that the largest 
relative discrepancies occur where the absolute value of the PSF is small and slowly 
changing in space.  Consequently, the discrepancies contribute little to localization 
errors.  (d) Comparison of radial distributions of the theoretical PSF (black) and the 
2D-Gaussian-plus-a-constant-background (red).  To calculate these, we constructed a 
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set of concentric and equally spaced annuli around the centre.  Each pixel in the 
images in a and b was associated with an annulus, if the pixel’s centre fell within the 
annulus.  For each annulus, we calculated the average signal over signals from pixels 
associated with it and plotted this as a function of the distance from the image centre 
to the centre of the annulus.  This reveals a “shoulder” in the theoretical distribution 
as indicated by the dotted line. The 2D-Gaussian-plus-a-constant-background PSF 
approximates the full theoretical model well by modelling the “shoulder” as 
“background”.  
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Supplementary Figure 2 
 
Calibration-on-the-spot applied to simulated images.  (a) Simulated image of a 
single, freely rotating fluorophore.  The pixel output-signal values were simulated 
using EMCCD camera statistics for the pixel output-signals (Methods).  The pixel 
size was 30 nm, the gain was 30, and the constant offset was 1,000.  (b) Theoretical 
image of a 2D-Gaussian-plus-a-constant PSF with parameters obtained from applying 
GME (Methods, Supplementary Note) to the simulated image in a.  (c) For each pixel 
in the corresponding images a and b, the simulated output-signal from a is plotted 
versus the fitted expected pixel output-signal from b.  The points scatter around a 
straight line through the origin with unit slope (full line), as expected if the assumed 
PSF is a good approximation of the true PSF.  The scatter of the points relative to the 
line has a variance given by Eq. (2) in the main paper.  Maximum likelihood 
estimation applied to the scatter yields the calibration-on-the-spot estimate for the 
calibration parameters (Methods).  The s.d. of the scatter with the estimated 
calibration parameters is indicated (dashed lines).  (d) For each of 100 images as in a, 
the gain was estimated using calibration-on-the-spot (Methods, Supplementary Note).  
The values were corrected for bias (Methods, Supplementary Note).  Error bars 
represent s.d. as calculated from the theoretical covariance matrix (Methods, 
Supplementary Note).  The time-averaged gain is indicated (mean ± theoretical s.e.m., 
red dashed line with shaded region).  (e) Same as d for the product of the gain and the 
offset.  (f) Same as d for the offset found from division of the frame-to-frame 
estimates of the product of gain and offset in e by the time-averaged value of the gain 
obtained in d. 
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Supplementary Figure 3 
 
Precision of calibration-on-the-spot.  We repeated the simulations described above 
(Supplementary Fig. 2) for movies consisting of 100 frames.  We also simulated data 
corresponding to various approximations in the methodology of calibration-on-the-
spot.  (a) For the data in Supplementary Fig. 2d, we subtracted the time-averaged gain 
from the frame-to-frame estimates of that quantity and rescaled each of those with 
their theoretical r.m.s. deviation.  Their distribution is normal with zero mean and unit 
variance (black curve), demonstrating that all variation in the estimates is accounted 
for by finite statistics, and that calibration-on-the-spot is optimally precise.  (b) Same 
as a for the product of gain and offset from Supplementary Fig. 2e.  (c) Same as a for 
the offset from Supplementary Fig. 2f.  (d-f) Same as a-c for data simulated assuming 
a 2D-Gaussian PSF with parameters matching those of the PSF for the freely rotating 
fluorophore (Methods, Supplementary Figs. 1-2) and pixel output-signals distributed 
according to EMCCD camera statistics.  (g-i) Same as d-f but assuming normally 
distributed output-signals (Methods, Supplementary Fig. 10).  (j-l) Same as g-i but 
here the known true values of the expected pixel output-signals and calibration 
parameters were used in the correction for bias.  There is no discernible difference 
between j-l and g-i, demonstrating that we introduce negligible error by using the 
fitted values for the expected pixel output-signals and the calibration parameters.  (m-
o) Same as j-l but using the known expected values of pixel output-signals in the fit.  
This artificially eliminates the need for the localization analysis and thus eliminates 
the bias introduced by that (Supplementary Note), hence no bias correction was 
applied here. 
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Supplementary Figure 4 
 
Accuracy of calibration-on-the-spot.  We repeated the simulations described above 
(Supplementary Figs. 2 and 3) for movies consisting of 100 frames for ten probes.  (a) 
Time-averaged gains (red circles) obtained using calibration-on-the-spot on such data 
simulated by assuming the PSF for a freely rotating fluorophore (Supplementary Fig. 
1) and pixel output-signals distributed according to EMCCD camera statistics 
(Methods, Supplementary Note).  Error bars are theoretical s.e.m. and the estimates 
were corrected for bias (Methods, Supplementary Note).  The estimates scatter as 
expected around their weighted average (red dashed line with shaded region 
indicating theoretical s.e.m.).  The latter value agrees with the true value of the 
parameter (black dashed line) within 2 per cent.  The uncorrected values (blue circles) 
and their weighted average (blue dashed line with shaded region indicating theoretical 
s.e.m.) are shown for comparison.  (b) Same as a for the product of the gain and the 
offset.  (c) Same as a for the offset (Methods, Supplementary Fig. 2c).  The weighted 
average agrees with the true value within 1 per cent.  (d-f) Same as a-c for data 
simulated assuming a 2D-Gaussian PSF with parameters matching those of the PSF 
for the freely rotating fluorophore (Methods, Supplementary Fig. 1) and pixel output-
signals distributed according to EMCCD camera statistics.  The estimated values 
agree with the true values.  (g-i) Same as d-f but assuming normally distributed 
output-signals (Supplementary Fig. 10).  The estimated values agree with the true 
values.  (j-l) Same as g-i but here the known true values of the expected pixel output-
signals and calibration parameters were used in the correction for bias.  There is no 
discernible difference between j-l and g-i, demonstrating that we introduce negligible 
error by using the fitted values for the expected pixel output-signals and the 
calibration parameters.  (m-o) Same as j-l but using the known expected values of 
pixel output-signals in the fit.  This artificially eliminates the need for the localization 
analysis and thus eliminates the bias introduced by that (Supplementary Note).  The 
uncorrected values (blue circles) and their weighted average (blue dashed line with 
shaded region indicating theoretical s.e.m.) thus agree with the true value of the 
parameter (black dashed line).  
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Supplementary Figure 5 
 
Effect of source intensity, pixel size, and background level.  We simulated images 
of isolated probes as described above (Methods, Supplementary Figs. 2 and 3).  
Specifically, we generated 100 images from each of ten probes and applied 
calibration-on-the-spot to each image to estimate the gain and offset.  Their true 
values are indicated (dashed lines).  (a) For various numbers of total expected source 
photons, the averaged gains with theoretical error bars are shown for, respectively, the 
true PSF for a freely rotating fluorophore (filled black circles) and a 2D-Gaussian PSF 
(filled red circles).  In both cases, we simulated pixel output-signals using the full 
output-signal distribution (Methods, Eq. (1) in Supplementary Note) and corrected the 
estimates for bias (Methods, Supplementary Note).  Uncorrected estimates are shown 
for comparison (open circles).  Estimates agree with the known true value within a 
few per cent for all total source photon numbers.  The pixel size was 55 nm and the 
background density was 0.002 photons/nm2.  (b) Same as a for the averaged offsets.  
For large total source photon numbers, the discrepancy between the PSF for a freely 
rotating fluorophore and the assumed 2D-Gaussian PSF results in a small bias.  Note 
that this bias is absent for photons indeed distributed according to a 2D-Gaussian 
PSF.  (c) For various pixel sizes, the averaged gains with theoretical error bars are 
shown for, respectively, the true PSF for a freely rotating fluorophore (filled black 
circles) and a 2D-Gaussian PSF (filled red circles).  In the latter case, we used 
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normally distributed output-signals, while we corrected for bias in both cases.  
Uncorrected estimates are shown for comparison (open circles).  Compare the first 
case to averaged gains (filled blue circles) obtained using the known true pixel output 
expected values in calibration-on-the-spot, such that no bias-correction is needed.  
This demonstrates that bias-correction works perfectly when pixels are small, as 
expected from theory (Supplementary Note).  Here, its performance results in 
estimates that agrees with the known truth for pixel sizes smaller than ~70 nm.  The 
total expected source photon number was 10,000 and the background density was 
0.002 photons/nm2.  (d) Same as c for the averaged offsets.  (e) Same as a for various 
numbers of expected background photons per pixel (of size 55 nm).  The total 
expected source photon number was 10,000.  For low background levels, the 
discrepancy between the PSF for a freely rotating fluorophore and the assumed 2D-
Gaussian PSF results in a small bias.  Note that this bias is absent for photons indeed 
distributed according to a 2D-Gaussian PSF.  Despite this bias, the estimates agree 
with the known truth within a few per cent for all background levels.  (f) Same as e 
for the averaged offsets. 
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Supplementary Figure 6 
 
Estimation of the product of gain and offset in calibration-on-the-spot.  (a) For 
each frame in a time-lapse movie of a rhodamine fluorophore labelling a single 
myosin V stepping along actin as described in Fig. 2a, we simultaneously estimated 
the parameters of the EMCCD camera parameterized as the gain (Fig. 2a) and the 
product of the gain and offset (black points).  The values were corrected for bias 
(Methods, Supplementary Note).  Error bars represent the s.d. as calculated from the 
theoretical covariance matrix.  We calculated the time-averaged value of the 
parameter and found 62·102 ± 3·102 (mean ± theoretical s.e.m., red dashed line with 
shaded area).  (b) Same as a for the time-lapse movie of a single Cy3 fluorophore 
immobilized on the coverslip surface as described in Fig. 2b.  In this case, we found 
58·103 ± 2·103.   
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Supplementary Figure 7 
 
Calibration-on-the-spot is optimally precise when applied to experimental data.  
(a) For the data in Fig. 2a from a single rhodamine fluorophore labelling a myosin V 
that was stepping along actin filaments, we subtracted the time-averaged gain from 
the frame-to-frame estimates of that quantity and rescaled each of those with their 
theoretical r.m.s. deviation.  Their distribution follows a normal distribution with zero 
mean and unit variance (black curve), demonstrating that all variation in the estimates 
is accounted for by finite statistics and, thus, that calibration-on-the-spot is optimally 
precise.  (b) Same as a for the data in Fig. 2b from a single Cy3 fluorophore 
immobilized on a coverslip surface.  (c) Same as a for the product of the gain and the 
offset (Supplementary Fig. 6a).  (d) Same as b for the product of the gain and the 
offset (Supplementary Fig. 6b).  (e) Same as a for the offset (Fig. 2c).  (f) Same as b 
for the offset (Fig. 2d). 
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Supplementary Figure 8 
 
Calibration using the full EMCCD output distribution.  (a) Pixel output-signals in 
a region consisting of 20 x 20 pixels from a region in the field of view imaging 
background only selected from a time-lapse movie of immobilized Cy3 fluorophores 
(Methods, Fig. 2).  (b) Fluctuations of time-averaged output-signals using ten 
consecutive frames from the time-lapse movie rescaled by the experimental r.m.s. 
deviation found from the pixel-wise sample variance.  The fluctuations show no 
discernable spatial correlations, which indicates that all pixels experience the same 
expected number of input photons hence follow the same statistics.  (c) Histogram of 
the rescaled fluctuations from b.  Their distribution approximately follows Student’s 
t-distribution with nine degrees of freedom (solid black curve).  Note that the excess 
skewness, due to the discrepancy between the signal-output distribution of the 
EMCCD camera and the normal distribution (assumed in Student's t-distribution), 
does not affect the calibration below.  (d) For each of the ten frames, we calculated 
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the fluctuations of region-averaged output-signals using all pixels in the region in a 
rescaled by the experimental r.m.s. deviation found from the frame-wise sample 
variance (black points).  The points scatter approximately normal around zero (dashed 
line) with unit variance (dotted lines indicate ± s.d.) and show no discernable 
temporal correlations.  (e) As all pixel output-signals in space and time follow the 
same statistics, demonstrated in b-d, we combined all measured output-signals.  Their 
distribution (red points) follows the EMCCD output-signal distribution (black curve, 
Eq. 1 in Supplementary Note) with parameters obtained using maximum likelihood 
estimation (Methods).  Specifically, we found a gain of 82, an offset of 710, an 
expected number of input photons of 4, and a readout-noise distribution width of 2.  
These numbers agree with those obtained using calibration-on-the-spot (Fig. 2f,h).  
Notice that the signature of the readout-noise is noticeable as a sharp peak around the 
value of the offset at this dim illumination; compare to Supplementary Fig. 10.  We 
also calculated the average number of events from five consecutive bins in the 
histogram (black points, error bars are s.e.m.).  Those points scatter as expected 
around the fitted theory.  (f) Same as e but showing only a subset plotted with 
logarithmic second axis. 
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Supplementary Figure 9 
 
Calibration-on-the-spot applied to an immobilized 40-nm fluorescent bead.  (a) A 
single 40-nm fluorescent bead was imaged in a TIRF microscopy experiment as a 
time-lapse movie at 10 Hz.  From each frame in the time-lapse movie, we used 
calibration-on-the-spot to estimate the gain (black points) of the EMCCD camera used 
in the experiment.  Error bars represent the s.d. as calculated from the theoretical 
covariance matrix (Methods, Supplementary Note).  The estimates were corrected for 
bias.  We calculated the time-averaged gain and found 36.4 ± 0.2 (mean ± theoretical 
s.e.m., red dashed line with shaded area).  (b) Same as a for the estimated offset of the 
EMCCD camera (black points).  Here we found 980.5 ± 0.5 (mean ± theoretical 
s.e.m., red dashed line with shaded area).  (c) For the data in a, we subtracted the 
time-averaged gain from the frame-to-frame estimates of that quantity and rescaled 
each of those with their theoretical r.m.s. deviation.  Their distribution follows a 
normal distribution with zero mean and unit variance (black curve), demonstrating 
that all variation in the estimates is accounted for by finite statistics and, thus, that 
calibration-on-the-spot is optimally precise.  (d) Same as c for the data from b. 
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Supplementary Figure 10 
 
The normal distribution approximates the EMCCD output-signal distribution.  
For expected input photon numbers of, respectively, 5 (red), 10 (blue), 20 (cyan), 30 
(magenta), 40 (black), and 50 (green), the full evaluation of the EMCCD camera pixel 
output-signal distribution (Eq. (1) in Supplementary Note) is shown (full lines).  For 
all evaluations, we used typical parameters for EMCCD cameras, specifically a gain 
of 30, a constant signal offset of 1,000, and a width of the readout-noise distribution 
of 5.  Approximations of the full output-signal distribution by normal distributions 
with identical means and variances (Eqs. (2) and (3) in Supplementary Note) (dashed 
lines) become increasingly accurate with increasing expected input photon number.  
The discrepancies between the full evaluation and the approximation did not 
significantly compromise parameter estimation with calibration-on-the-spot (Fig. 2 
and Supplementary Figs. 2-5). 
 
 



SUPPLEMENTARY NOTE

1 Photon and EMCCD camera statistics

1.1 Photon input from an isolated, fluorescent probe

An isolated, fluorescent probe emits photons that are independent and identically distributed.

When the probe is imaged in a localization microscopy experiment (Fig. 1a), the photons building

the image arrive independently at random positions in the image plane with a probability density in

the plane that equals the classical point spread function (PSF) of the experiment (Supplementary

Fig. 1). The number n of photons detected by a given pixel in a single image of such a fluorophore

(Fig. 1a and Supplementary Fig. 2a), is consequently a Poisson distributed random variable. We

denote its expected value by ⌫: ⌫ = hni.

1.2 Pixel output-signals from an EMCCD camera

For each photon detected in a given pixel, the EMCCD camera’s on-chip electron multiplication

process outputs a random number S of electrons, where S has an exponential probability distri-

bution exp(�S/G)/G, with G the gain of the camera1�4. We assume that the gain is so large that

we can treat that S as a real number. Consequently, n detected photons will output a random

number of electrons that is drawn from the convolution of n identical exponential probability

distributions exp(�S/G)/G. This convolution results in the Erlang distribution with shape pa-

rameter n and rate parameter 1/G. It then follows that the probability density p of output-signal

values S generated in a pixel by Poisson distributed input photons with expected value ⌫, is

p(S) = exp(�⌫)�(S) +

r
⌫

GS
exp(�S/G� ⌫)I

1

(2
p
⌫S/G) , (1)

where I
1

is the modified Bessel function of the first kind and of order one1,4. To model the e↵ects

of readout-noise of the camera, this distribution is convoluted with a Gaussian readout-noise

distribution of width �
noise

. The presence of readout-noise makes it possible for the output-signals

to take negative values. To ensure positive output-signal values everywhere, the output-signal is

o↵set by a factory-set positive constant S
o↵set

. By o↵setting the above probability distribution with

that amount, we have the theory for the output-signal from the EMCCD camera (Supplementary
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Figs. 8 and 10). Even at low input intensity levels, the read-out noise of the camera is negligible

for our purposes (Supplementary Figs. 2-5).

The first few central moments of S to leading order in G read

hSi = G⌫ + S
o↵set

(2)

h(S � hSi)2i = 2G2⌫ (3)

h(S � hSi)3i = 6G3⌫ (4)

h(S � hSi)4i = 12G4⌫2 + 24G4⌫ . (5)

where h·i denotes the expected value. Note that Eqs. (2) and (3) agree with the main paper’s

Eqs. (1) and (2).

When we apply calibration-on-the-spot, we take advantage of the fact that the pixel output-

signal distribution, Eq. (1), approaches a normal distribution with mean and variance given by

Eqs. (2) and (3) as the expected input signal ⌫ increases (Supplementary Fig. 10).

1.3 Calibration using the EMCCD output distribution

One may calibrate with the EMCCD output distribution, Eq. (1), if one has access to pixel output-

signals recorded with the EMCCD at spatiotemporal constant, dim illumination in the form of

either a dedicated, separate calibration measurement1,4 or the rather unlikely case where a region

of constant background in actual recordings of fluorescent probes may be used (Fig. 2f,h and

Supplementary Fig. 8). The first case requires additional measurements, and the latter presum-

ably is only possible in the cleanest single-molecule experiments recorded with TIRF microscopy,

while both require meticulous statistical verification of the assumption of constant illumination

(Supplementary Fig. 8).

Using maximum likelihood estimation (MLE), one may use Eq. (1) to obtain the gain G, the

constant signal o↵set S
o↵set

, the width of the Gaussian readout noise distribution �
noise

, and the

expected value of the constant photon input ⌫ (Supplementary Fig. 8).
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2 Localization analysis

2.1 Theory for image formation

We have compared methods for particle localization in fluorescence microscopy elsewhere1, so we

point the reader there for details. Thus, the following only contains information necessary to

implement the localization analysis used in calibration-on-the-spot.

We assume that an isolated, fluorescent probe is imaged as a spatial intensity distribution for

which we have a theory. The probability density for observation of a source photon at position ~r

in an image is given by the point spread function p
PSF

(~r|✓
PSF

), where ✓
PSF

is a set of parameters

that specifies the PSF and typically includes the position coordinates of the fluorescent probe.

The probability Pi to measure a source photon in the i’th pixel of the camera is

Pi(✓PSF) =

Z

~r2 pixel#i

d~r p
PSF

(~r|✓
PSF

) . (6)

Our theory for the expected value Ei = hSii of the output signal Si in the i’th pixel on the camera

in a single image is

Ei(✓) = GNPi(✓PSF) +Gb2 + S
o↵set

, (7)

where N is the total expected number of detected source photons from the probe in a single image,

hence GN is the total expected output signal due to source photons; and b2 is the expected number

of background photons detected with any pixel in each image, hence Gb2 is the total expected

pixel output signal due to the background. Here ✓ is a set of parameters to be estimated from

data, which includes all parameters ✓
PSF

necessary to specify the PSF along with the total photon

number, the constant background, and the calibration parameters.

2.2 Localization with the Gaussian Mask Estimator

Often, a 2D-Gaussian-plus-a-constant-background PSF is a very good approximation to the the-

oretical PSF of a localization microscopy experiment1 (Methods, Supplementary Fig. 1), such as

those investigated in this paper. Note, though, that notable exceptions exist1,5. In the case of a

2D-Gaussian PSF,

p(~r|✓
PSF

) =
1p

2⇡�2

PSF

e�(~r�~µ)2/2�2

PSF , (8)
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such that ✓
PSF

= {~µ, �
PSF

} is comprised of the probe’s position coordinates ~µ and width ✓
PSF

of

the 2D-Gaussian PSF. With this choice, the set of parameters ✓ = {~µ, �
PSF

, S, S
0

} specifies the

expected output-signal in any pixel given by Eq. (7), where we have introduced the definitions

S
0

= Gb2+S
o↵set

and S = GN . These definitions highlight that localization performed by matching

experimental and expected values of the pixel output-signal cannot determine the calibration

parameters independently but only as functions of the unknown total expected photon number

and background. For this very reason, the statistical properties of the pixel output-signals are

unknown, hence cannot be taken into account in localization as pixel-dependent statistical weights

of pixel outputs. Unweighted least-squares ignores pixel weights and results in the so-called

Gaussian Mask Estimator (GME)1,6, as discussed in the main paper. This estimator determines ✓

from the experimental signals {Si}i, where i labels each pixel included in the image, by minimizing

the unweighted sum-of-squares,

�2 =
X

i

(Si � Ei(✓))
2 , (9)

with respect to the parameter set ✓. By calculating the derivatives with respect each component

✓a in ✓, we find a set of stationarity conditions1,

X

i

(Si � Ei)Ei,a = 0 , (10)

where Ei,a denotes the derivative of Ei with respect to the a’th component of ✓. In practice,

this non-linear estimation is done numerically, by direct minimization of Eq. (9). Doing this, we

obtain an estimate ✓̂ for ✓. In turn, we evaluate Eq. (7) at ✓̂ to estimate the expected output-signal

Êi = Ei(✓̂) in each pixel, which we need to perform calibration-on-the-spot.

2.3 Linearization of the stationarity conditions

We denote the true value of the parameters by ✓⇤, and we assume that su�cient statistics have been

acquired in an image to ensure that the deviation of our estimate ✓̂ from ✓⇤ is small. Note, however,

that the deviations of the measured pixel output-signals Si from their true values E⇤
i = Ei(✓⇤) are

not necessarily small. The deviations from the true values of, respectively, the parameters and

the pixel output-signals, we denote by

�✓ = ✓̂ � ✓⇤ (11)

�Si = Si � E⇤
i . (12)
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With �✓ assumed small, the fitted values Êi = Ei(✓̂) for the expected pixel output-signal and its

derivative Êi,a = Ei,a(✓̂) with respect to the a’th component of ✓ may be written approximately

as Taylor expansions to first order in �✓ around their true values,

Ei(✓
⇤ +�✓) = E⇤

i +
X

b

E⇤
i,b�✓b (13)

Ei,a(✓
⇤ +�✓) = E⇤

i,a +
X

b

E⇤
i,a,b�✓b . (14)

Here, E⇤
i,a denotes the derivative of Ei with respect to the a’th component in ✓ and evaluated at

✓⇤. When these relations are inserted into the stationarity condition, Eq. (10), the latter may be

solved for the deviation in the a’th component of ✓. Thus,

�✓a =
X

b

(I�1)a,b
X

i

�SiE
⇤
i,b , (15)

where we have introduced the “information” matrix for GME,

Ia,b ⌘
X

i

E⇤
i,aE

⇤
i,b . (16)

Inserting Eq. (15) into Eq. (13), the fitted expected value for the pixel output-signal in the j’th

pixel may be written as a function of the deviations in the pixel output-signals as

Ej(✓̂) = E⇤
j +

X

b

E⇤
j,b�✓b

= E⇤
j +

X

i

�Si

X

a,b

E⇤
j,a(I

�1)a,bE
⇤
i,b

⌘ E⇤
j +

X

i

�Sifij , (17)

where we have defined

fij ⌘
X

a,b

E⇤
j,a(I

�1)a,bE
⇤
i,b , (18)

a matrix that describes the linear relationship between deviations of pixel output-signals from

their expected values and deviations of fitted expected pixel values from their true values.

Note that this function is used in the analytical correction for bias of the estimated calibration

parameters, as discussed below. Thus, if one wishes to perform bias-correction, the elements of

fij should be calculated and stored, after having applied the localization analysis to an image

of a spot. To do that, and for lack of knowledge about the true value ✓⇤ of ✓, we evaluate all

occurrences of Ei,a in Eqs. (16) and (18) at our estimated parameters ✓̂.
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3 Calibration-on-the-spot

We assume that the photon count in all pixels considered is su�ciently large to justify a normal

distribution of output signals (Supplementary Fig. 10). This is typically the case because of actual

photonic background and because we do not consider pixels in the tail of the PSF, but only in

a square containing its central peak and shoulders (Supplementary Fig. 1). Thus, our theory for

the output signal from the i’th pixel is a Gaussian distribution,

pi(Si|✓cots) =
1p
2⇡vi

e�(Si�Ei)
2/2vi , (19)

in which the variance explicitly reads

vi(✓cots) = 2G(Ei � S
o↵set

) = 2GEi � 2GS
o↵set

. (20)

We have already obtained estimates Êi for the expected values Ei in Eqs. (19) and (20) from

the localization analysis. These expected values contain no information about the calibration

parameters, as discussed above. Thus, all dependence on the calibration parameters ✓
cots

=

{G,S
o↵set

} in the signal output distribution in Eq. (19) is contained in its variance in Eq. (20).

However, it is preferable to perform the calibration by determining, instead, the set of parameters

✓
cots

= {G,GS
o↵set

} ⌘ {G,S 0
o↵set

} , (21)

the components of which appear linearly in Eq. (20). This choice ensures desirable convergence

properties of the estimates below. We will use MLE to determine ✓
cots

. The likelihood for the set

of parameters ✓
cots

, given the measured signals {Si}i, is

L(✓
cots

|{Si}i) =
Y

i

Pi(Si|✓cots) , (22)

and its logarithm is

` = log (L(✓
cots

|{Si}i)) =
X

i

� log(vi)�
(Si � Ei)2

vi
. (23)

The maximum likelihood estimate ✓̂
cots

is found by maximization of the log-likelihood with respect

to each of the components in ✓
cots

. For each component a in ✓
cots

, we have the stationarity condition

0 =
@`

@✓
cots,a

=
X

i

�vi,a
vi

+
(Si � Ei)2

v2i
vi,a , (24)
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where vi,a denotes the derivative of vi with respect to the a’th component in ✓
cots

. In practice,

the maximum likelihood estimates are obtained by numerical maximization of Eq. (23). Also

note that, for lack of their true values, we will use the fitted expected pixel output-signals Êi in

Eqs. (23) and (24) in place of Ei, when we perform this maximum likelihood estimation. This

introduces a bias in the estimated parameters, as discussed in the main paper and below.

3.1 Linearization of the stationarity conditions

In the following, we will let the “cots” subscript on ✓ be implied, such that ✓ = ✓
cots

. Its true value

is denoted ✓⇤. The deviation in each parameter estimate and the deviations in signals, respectively,

from their true values may be written as

�✓a = ✓̂a � ✓⇤a (25)

�Si = Si � E⇤
i . (26)

We will assume that the statistics of a recorded image is su�ciently good to ensure that the

deviation �✓a of a the a’the calibration parameter estimate ✓̂a from its true value ✓⇤a is small. As

above, the deviations of signal values from their true values are not necessarily small.

Our estimates for, respectively, the pixel specific variance v̂i = vi(✓̂) and its derivative v̂i,a =

vi,a(✓̂) with respect to the a’th component in ✓ may be Taylor expanded to first order in �✓ around

their true values v⇤i = vi(✓⇤) and v⇤i = vi(✓⇤),

vi(✓
⇤ +�✓) = v⇤i +

X

b

v⇤i,b�✓b (27)

vi,a(✓
⇤ +�✓) = v⇤i,a +

X

b

v⇤i,a,b�✓b , (28)

where v⇤i,a,b is the derivative of vi,a with respect to the b’th component in ✓ and evaluated at ✓⇤.

Now, inserting Eqs. (27) and (28) into the stationarity conditions, Eq. (24), yields

0 =
X

i

"
1

v⇤i +
P

b v
⇤
i,b�✓b

�
(�Si �

P
j fij�Sj)2

(v⇤i +
P

b v
⇤
i,b�✓b)2

# 
v⇤i,a +

X

b

v⇤i,a,b�✓b

!
. (29)

Linearizing the terms in the square brackets with respect to �✓ gives us

0 =
X

i

"
1

v⇤i

 
1� 1

v⇤i

X

b

v⇤i,b�✓b

!

�
(�Si �

P
j fij�Sj)2

v⇤2i

 
1� 2

v⇤i

X

b

v⇤i,b�✓b

!# 
v⇤i,a +

X

b

v⇤i,a,b�✓b

!
. (30)
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Keeping terms to first order in the parameter fluctuations, reduces the above to,

0 =
X

i

"
v⇤i,a
v⇤i

�
v⇤i,a
v⇤2i

(�Si �
X

j

fij�Sj)
2 +

1

v⇤i

X

b

v⇤i,a,b�✓b �
v⇤i,a
v⇤2i

X

b

v⇤i,b�✓b

+
2v⇤i,a
v⇤3i

(�Si �
X

j

fij�Sj)
2

X

b

v⇤i,b�✓b �
1

v⇤2i
(�Si �

X

j

fij�Sj)
2

X

b

v⇤i,a,b�✓b

#
. (31)

In the present case, with the parameterization introduced in Eq. (21), we have

v⇤i,G = 2E⇤
i (32)

v⇤i,S0
o↵set

= �2 , (33)

and thus v⇤i,a,b = 0, for a, b 2 ✓, so the third and last terms of Eq. (31) vanish. Reorganizing the

remaining terms, we find

X

b

X

i

"
v⇤i,av

⇤
i,b

v⇤2i
� 2

v⇤i,av
⇤
i,b

v⇤3i
(�Si �

X

j

fij�Sj)
2

#
�✓b =

X

i

"
v⇤i,a
v⇤i

�
v⇤i,a
v⇤2i

(�Si �
X

j

fij�Sj)
2

#
.

(34)

Note that the deviations in pixel output-signals have zero expected value and are uncorrelated

between di↵erent pixels, so

h�Sii = 0 (35)

h�Si�Sji = v⇤i �ij . (36)

On the left-hand-side of Eq. (34), �✓b is a small quantity, so we approximate its coe�cient with

its value to leading order. Specifically, we replace linear and quadratic expressions in �Si with

their expected values to obtain

X

b

X

i

"
v⇤i,av

⇤
i,b

v⇤2i

 
�1 + 4fii � 2

1

v⇤i

X

j

f 2

ijv
⇤
j

!#
�✓b =

X

i

"
v⇤i,a
v⇤i

�
v⇤i,a
v⇤2i

(�Si �
X

j

fij�Sj)
2

#
. (37)

Here we have used the relations
* 

X

j

fij�Sj

!
2

+
=

*
X

j,k

fijfik�Sj�Sk

+
=
X

j

f 2

ijv
⇤
j , (38)

*
�Si

X

j

fij�Sj

+
=

*
X

j

fij�Si�Sj

+
= fiiv

⇤
i . (39)
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By defining the matrix

Ia,b ⌘
X

i

v⇤i,av
⇤
i,b

v⇤2i

 
1� 4fii + 2

1

v⇤i

X

j

f 2

ijv
⇤
j

!
, (40)

we now may write Eq. (37) as

X

b

Ia,b �✓b =
X

i

"
v⇤i,a
v⇤2i

(�Si �
X

j

fij�Sj)
2 �

v⇤i,a
v⇤i

#
. (41)

Thus, a deviation in an estimated calibration parameter can be explained in terms of deviations

in pixel output-signal values as

�✓a =
X

b

�
I�1

�
a,b

X

i

"
v⇤i,b
v⇤2i

(�Si �
X

j

fij�Sj)
2 �

v⇤i,b
v⇤i

#
. (42)

3.2 Accuracy of estimators for calibration parameters

Accuracy quantifies agreement between an estimator’s mean value and the true value it attempts to

estimate. An accurate, or unbiased, estimator is thus characterized by h�✓ai = 0. By calculating

the expected value of Eq. (42), we may directly quantify the bias of the calibration procedure,

h�✓ai =
X

b

�
I�1

�
a,b

X

i

"
v⇤i,b
v⇤2i

 
v⇤i +

X

j

f 2

ijv
⇤
j � 2fiiv

⇤
i

!
�

v⇤i,b
v⇤i

#

=
X

b

�
I�1

�
a,b

X

i

"
v⇤i,b
v⇤2i

 
X

j

f 2

ijv
⇤
j � 2fiiv

⇤
i

!#
. (43)

Thus, in general, estimates for the calibration parameters obtained as described in Sec. (3) are

biased. This bias arises, because we are using the fitted expected pixel output-signals Êi obtained

from the localization analysis in place of their true values E⇤
i . Some of the variation in the pixel

output-signals is thus absorbed by the parameters resulting from the localization analysis. Thus,

when calibration is performed by analyzing the variation around Êi instead of E⇤
i , one, e.g.,

underestimates the gain of the camera (Supplementary Figs. 4 and 5).

Had we, instead, known the true expected pixel output-signal values by other means than the

localization analysis, we would have fij = 0 for all i, j by virtue of Eq. (17). In this special case,

the estimators for the calibration parameters would be unbiased, because Eq. (43) shows that

h�✓ai = 0 for all (both) a (Supplementary Figs. 4 and 5).

In practice, one does not know the true expected output-signals a priori and thus has to rely

on the localization analysis to provide them, and the estimator will be biased in general. However,
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with the analytical result of Eq. (43), one may correct estimated parameters for this bias (Fig.

2 and Supplementary Figs. 2—5 and 9). To this end, one uses the values of fij calculated and

stored after the localization analysis and proceeds by evaluating all remaining terms in Eq. (43)

at our estimates for the appropriate parameters instead of at their true values, for lack of this

knowledge.

3.3 Precision of estimators for calibration parameters

While the accuracy of our estimators for calibration parameters is a↵ected by our use of the fitted

expected output-signals in place of their true values, the precision of our estimators is not (Fig. 2

and Supplementary Fig. 3). Neglecting this e↵ect, we assume that Êi = E⇤
i for all pixels i in an

image of a spot, i.e. fij = 0 for all pixels i and j. In this approximation, a deviation in a parameter

estimate, Eq. (42), becomes

�✓a =
X

b

�
I�1

�
a,b

X

i


v⇤i,b
v⇤2i

(�Si)
2 �

v⇤i,b
v⇤i

�
, (44)

with

Ia,b ⌘
X

i

v⇤i,av
⇤
i,b

v⇤2i
. (45)

The variance of the estimator ✓̂a may be written

var
⇣
✓̂a
⌘
=

D
(✓̂a � h✓̂ai)2

E
=

⌦
�✓2a

↵
� (h✓̂ai � ✓⇤a)

2 . (46)

For an unbiased estimator, h✓̂ai = ✓⇤a, and hence the last term in Eq. (46) vanishes. In the present

case, there is in general a bias, so h✓̂ai 6= ✓⇤a, as discussed above. In an image with small pixels,

the contribution from the bias is so small compared to the first term in Eq. (46) that one may

safely ignore its contribution to the variance (Fig. 2 and Supplementary Fig. 3). In images with

larger pixels, however, one cannot neglect the last term. It is estimated using the result for the

bias in Eq. (43).

For any pixel size, calculation of the variance requires calculation of
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2
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, (47)
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which has the expected value
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#
. (48)

In practice, the variance associated with an estimate obtained with calibration-on-the-spot is

found by evaluating each function in Eq. (48) at the estimated parameter values for lack of

knowledge about their true values. A similar calculation leads to the covariance h(�✓a�✓b)i

between estimates. While these expressions look complicated, their use is not: One simply plugs

in values on the right-hand side and is done, since the left-hand side is the desired result. Computer

code doing this is given in Supplementary Software. All the complications were in their derivation

described here.
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