

Supplementary Materials for

Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females

Vicent Ribas, Brian G. Drew, Zhenqi Zhou, Jennifer Phun, Nareg Y. Kalajian, Teo Soleymani, Pedram Daraei, Kevin Widjaja, Jonathan Wanagat, Thomas Q. de Aguiar Vallim, Amy H. Fluitt, Steven Bensinger, Thuc Le, Caius Radu, Julian P. Whitelegge, Simon W. Beaven, Peter Tontonoz, Aldons J. Lusis, Brian W. Parks, Laurent Vergnes, Karen Reue, Harpreet Singh, Jean C. Bopassa, Ligia Toro, Enrico Stefani, Matthew J. Watt, Simon Schenk, Thorbjorn Akerstrom, Meghan Kelly, Bente K. Pedersen, Sylvia C. Hewitt, Kenneth S. Korach, Andrea L. Hevener*

*Corresponding author. E-mail: ahevener@mednet.ucla.edu

Published 13 April 2016, *Sci. Transl. Med.* **8**, 334ra54 (2016) DOI: 10.1126/scitranslmed.aad3815

The PDF file includes:

Table S1. Basal metabolic characteristics in female subjects.

Table S2. Animal characteristics after a 6-hour fast in the basal or clamped state. Table S3. Annotation of functionally enriched terms from Illumina microarray analyses on quadriceps muscle from female Control f/f versus MERKO mice. Table S4. Microarray analyses on quadriceps muscle from Control f/f versus MERKO mice.

Table S5. Primer sequences for qPCR analyses on tissues and for genotyping of Control f/f and MERKO mice.

Fig. S1. Real-time respirometry in C2C12 myotubes.

Fig. S2. Muscle peak tension and time to fatigue.

Fig. S3. Polg1 expression is regulated by ER α in muscle.

Fig. S4. Altered mitochondrial fission-fusion signaling in ER α -deficient C2C12 myotubes.

Fig. S5. Calcineurin-PKA-Rcan1 axis in C2C12 myotubes with Esr1-KD.

Fig. S6. Expression of autophagy-related genes in MERKO muscle.

Fig. S7. Autophagic flux studies in C2C12 myocytes with Esr1-KD.

table S1. Basal metabolic characteristics in female subjects. Age, body weight, fat mass, body mass index, and glucose and insulin concentrations in healthy women (Healthy Cohort n=18; n=9 premenopausal and n=9 postmenopausal) and women displaying clinical features of the metabolic syndrome (MetSyn, n=25; n=21 premenopausal and n=4 postmenopausal). The healthy cohort of women were stratified by menopausal status (n=9/group) and age, body weight, BMI, fat free mass, fasting blood glucose, fasting insulin, estradiol, FSH, and LH values are provided in the lower panel. Values are expressed as means \pm SD. Mean differences were detected by Student's t-test, and *P* values are provided for each comparison.

n	Healthy 18	MetSyn 25	Ρ
Age studied (yrs)	46 ± 5	45 ± 2	0.934
Body weight (kg)	64 ± 2.0	89 ± 3.0	<0.001
Fat mass (kg)	24 ± 1	40 ± 2	<0.001
BMI	23 ± 1	33 ± 5	<0.001
Fasting blood glucose (mg/dl)	87 ± 2	90 ± 2	0.371
rasting insulin (phol/l)	41.0 ± 0.7	01.0±1.9	<0.001

Healthy Cohort	Premenopausal	Postmenopausal	
n	9	9	
Age studied (yrs)	23 ± 0.5	68 ± 0.7	<0.001
Body weight (kg)	64 ± 2.6	65 ± 2.7	0.71
BMI	22 ± 0.79	24 ± 0.90	0.16
Fat free mass (kg)	40.6 ± 1.8	40.2 ± 0.87	0.84
Fasting blood glucose (mg/dl)	83 ± 3	94 ± 4	0.06
Fasting insulin (pmol/l)	43 ± 6.5	30.4 ± 4.0	0.11
Estradiol (pg/ml)	139 ± 40.5	14 ± 0.27	0.004
FSH (IU/L)	5.3 ± 0.51	68.9 ± 6.17	<0.001
LH (IU/L)	8.6 ± 1.38	28.2 ± 2.9	<0.001

table S2. Animal characteristics following a 6-hour fast in the basal or clamped state. Body weights and biochemical parameters are represented as mean \pm SEM, *n*=6-16 female animals, per genotype (Control f/f vs. MERKO), normal chow (NC) fed. Mean differences were detected by one-way ANOVA or Student's t-test where appropriate, and exact *P* values are provided for each comparison

	Control f/f	MERKO	Р
<i>n</i> basal	16	16	
<i>n</i> clamp	1	1	
n muscle glucose uptake	b 40.00	6	
Age studied (WK)	12-28	12-28	
Circulating normones and adipokines	0.00	0.40 0.00	0.04
Fasting insulin (ng/mi), 12 weeks	0.22 ± 0.02	0.40 ± 0.03	0.01
Adiponectin (µg/ml), 12 weeks	44 ± 1.4	29 ± 0.08	0.004
Leptin (ng/ml), 12 weeks	1.5 ± 0.3	3.0 ± 0.4	0.001
Body weight (g)			
Age 10-12 weeks	21.3 + 0.5	22.3 ± 0.7	0.286
Age 24 weeks (muscle GU studies)	23.7 ± 0.4	26.2 ± 1.1	0.008
Age 28 weeks (clamp studies)	24.4 ± 0.6	29.5 ± 1.4	0.004
Tissue weights (g) 28 weeks of age			
Gonadal fat	0.43 ± 0.08	1.08 ± 0.23	0.019
Liver weight	0.87 ± 0.02	0.98 ± 0.03	0.012
Heart weight	0.107 ± 0.004	0.114 ± 0.002	0.17
Clamp studies			
Fasting blood glucose (mg/dl)	124 ± 2	116 ± 2	0.07
Clamp blood glucose (mg/dl)	114 ± 4	115 ± 2	0.77
Clamp insulin (ng/ml)	9 ± 2.5	11.8 ± 2	0.41
Basal glucose turnover	21 ± 2.1	26 ± 1.3	0.06
(mg/kg/min)		-	
GIR (mg/kg/min)	57 ± 3.1	40 ± 3.0	0.001

table S3. Annotation of functionally enriched terms from Illumina microarray analyses on quadriceps muscle from female Control f/f versus MERKO mice (n=4-5 pooled samples of 3 muscles per genotype). Gene-functional annotation enrichment analysis to identify overrepresented biological terms associated with upregulated or downregulated genes in MERKO muscle microarray. Annotation categories from Gene Ontology Biological Process / Cellular Component, KEGG Pathways or Tissue_UP were used to identify statistically significant enrichment using DAVID bioinformatics resources.

Gene Ontology - Biological Process	<u>Count</u>	<u>%</u>	Fold Enrichment	<u> P-Value</u>
GO:0014706~striated muscle tissue development	8	8.1	10.8	8.16E-06
GO:0060537~muscle tissue development	8	8.1	10.2	1.19E-05
GO:0044057~regulation of system process	9	9.1	7.7	1.79E-05
GO:0002026~regulation of the force of heart contraction	4	4.0	49.3	6.14E-05
GO:0007517~muscle organ development	8	8.1	7.8	6.50E-05
GO:0006937~regulation of muscle contraction	5	5.1	19.5	1.13E-04
GO:0043434~response to peptide hormone stimulus	6	6.1	10.8	2.15E-04
GO:0009725~response to hormone stimulus	7	7.1	7.3	3.52E-04
GO:0034097~response to cytokine stimulus	4	4.0	23.7	5.91E-04
GO:0008203~cholesterol metabolic process	5	5.1	12.5	6.38E-04
GO:0009719~response to endogenous stimulus	7	7.1	6.5	6.55E-04
GO:0051336~regulation of hydrolase activity	7	7.1	6.1	9.05E-04
GO:0016125~sterol metabolic process	5	5.1	11.3	9.45E-04
GO:0051258~protein polymerization	4	4.0	17.3	1.50E-03
GO:0055002~striated muscle cell development	4	4.0	14.6	2.48E-03
GO:0008016~regulation of heart contraction	4	4.0	13.3	3.18E-03
GO:0006869~lipid transport	5	5.1	7.8	3.58E-03
GO:0055001~muscle cell development	4	4.0	12.6	3.78E-03
GO:0048738~cardiac muscle tissue development	4	4.0	11.9	4.45E-03
GO:0010876~lipid localization	5	5.1	7.3	4.69E-03
GO:0042157~lipoprotein metabolic process	4	4.0	9.9	7.46E-03
GO:0051346~negative regulation of hydrolase activity	3	3.0	21.8	7.99E-03
GO:0007519~skeletal muscle tissue development	4	4.0	9.6	8.11E-03
GO:0060538~skeletal muscle organ development	4	4.0	9.3	8.80E-03
GO:0006163~purine nucleotide metabolic process	5	5.1	5.7	1.11E-02
GO:0051146~striated muscle cell differentiation	4	4.0	8.1	1.27E-02
GO:0010927~cellular component assembly involved in	3			1.37E-02
morphogenesis		3.0	16.6	
GO:0008202~steroid metabolic process	5	5.1	5.3	1.37E-02
GO:0048747~muscle fiber development	3	3.0	15.5	1.55E-02
GO:0006873~cellular ion homeostasis	6	6.1	4.0	1.61E-02

Upregulated genes - Functional annotation enriched terms

GO:0048878~chemical homeostasis	7	7.1	3.4	1.64E-02
GO:0055082~cellular chemical homeostasis	6	6.1	3.9	1.75E-02
GO:0043623~cellular protein complex assembly	4	4.0	6.7	2.13E-02
GO:0050801~ion homeostasis	6	6.1	3.6	2.43E-02
GO:0030300~regulation of intestinal cholesterol				2.44E-02
absorption	2	2.0	80.1	
GO:0010033~response to organic substance	8	8.1	2.7	2.46E-02
GO:0042692~muscle cell differentiation	4	4.0	6.0	2.76E-02
GO:0032371~regulation of sterol transport	2	2.0	64.1	3.04E-02
GO:0032374~regulation of cholesterol transport	2	2.0	64.1	3.04E-02
GO:0043462~regulation of ATPase activity	2	2.0	64.1	3.04E-02
GO:0019932~second-messenger-mediated signaling	4	4.0	5.8	3.10E-02
GO:0044093~positive regulation of molecular function	6	6.1	3.3	3.31E-02
GO:0032368~regulation of lipid transport	2	2.0	53.4	3.64E-02
GO:0044058~regulation of digestive system process	2	2.0	53.4	3.64E-02
GO:0006164~purine nucleotide biosynthetic process	4	4.0	5.3	3.86E-02
GO:0030005~cellular di-, tri-valent inorganic cation				3.94E-02
homeostasis	4	4.0	5.3	
GO:0044092~negative regulation of molecular function	4	4.0	5.1	4.18E-02
GO:0042592~homeostatic process	8	8.1	2.4	4.35E-02
GO:0019725~cellular homeostasis	6	6.1	3.1	4.41E-02
GO:0006936~muscle contraction	3	3.0	8.6	4.66E-02
GO:0045214~sarcomere organization	2	2.0	40.0	4.83E-02
GO:0055066~di-, tri-valent inorganic cation homeostasis	4	4.0	4.8	4.88E-02
Gene Ontology - Cell Component	_			~ ~ ~ ~ ~ ~
GO:0032994~protein-lipid complex	5	5.1	26.9	3.09E-05
GO:0034358~plasma lipoprotein particle	5	5.1	26.9	3.09E-05
GO:0030017~sarcomere	6	6.1	12.3	1.17E-04
GO:0044449~contractile fiber part	6	6.1	11.3	1.72E-04
GO:0030016~myofibril	6	6.1	10.7	2.19E-04
GO:0043292~contractile fiber	6	6.1	10.2	2.74E-04
GO:0005576~extracellular region	23	23.2	2.2	3.69E-04
GO:0005615~extracellular space	11	11.1	3.4	1.12E-03
GO:0034364~high-density lipoprotein particle	3	3.0	27.2	5.16E-03
GO:0044421~extracellular region part	12	12.1	2.5	7.93E-03
GO:0005759~mitochondrial matrix	5	5.1	4.8	1.99E-02
GO:0031980~mitochondrial lumen	5	5.1	4.8	1.99E-02
GO:0005856~cytoskeleton	13	13.1	2.0	2.88E-02
GO:0015629~actin cytoskeleton	5	5.1	4.2	3.07E-02
GO:0031674~I band	3	3.0	9.3	4.06E-02
GO:0044429~mitochondrial part	8	8.1	2.4	4.56E-02

GO:0005863~striated muscle thick filament	2	2.0	41.4	4.67E-02
KEGG Pathway				
mmu05414:Dilated cardiomyopathy	8	8.1	12.2	2.51E-06
mmu04260:Cardiac muscle contraction	6	6.1	11.2	1.50E-04
mmu04610:Complement and coagulation cascades	6	6.1	10.2	2.41E-04
mmu05410:Hypertrophic cardiomyopathy (HCM)	6	6.1	9.9	2.73E-04
mmu04540:Gap junction	5	5.1	7.9	3.11E-03
mmu03320:PPAR signaling pathway	4	4.0	6.7	2.01E-02
mmu04020:Calcium signaling pathway	5	5.1	3.8	3.68E-02
mmu04960:Aldosterone-regulated sodium reabsorption	3	3.0	9.4	3.83E-02
Tissue Specific expression				
Plasma	11	11.1	22.1	5.68E-11
Liver	46	46.5	2.5	7.09E-10
Skeletal muscle	7	7.1	7.5	3.31E-04
Heart	14	14.1	2.8	1.14E-03

Downregulated genes - Functional annotation enriched terms

Gene Ontology - Biological Process	<u>Count</u>	<u>%</u>	Fold	PValue
			Enrichment	
GO:0019318~hexose metabolic process	4	6.5	9.2	8.45E-03
GO:0005996~monosaccharide metabolic process	4	6.5	8.2	1.17E-02
GO:0034613~cellular protein localization	4	6.5	5.1	4.03E-02
GO:0070727~cellular macromolecule localization	4	6.5	5.0	4.10E-02
GO:0006605~protein targeting	3	4.8	8.4	4.65E-02
GO:0006006~glucose metabolic process	3	4.8	8.4	4.72E-02
<u>Gene Ontology - Cell Component</u>				
GO:0070013~intracellular organelle lumen	9	14.5	2.2	4.67E-02
GO:0043233~organelle lumen	9	14.5	2.2	4.74E-02
Tissue Specific expression				
Macrophage	8	12.9	4.0	3.35E-03

table S4. Microarray analyses on quadriceps muscle from Control f/f versus MERKO mice. Significant differences in gene expression between genotypes are indicated within a 5% false discovery rate. Gene expression reduced by muscle ER α deletion compared with Control f/f

PROBE_ID	SYMBOL	logFC	AveExpr	t (fold change f/fvMERK	P.Value	adj.P.Val	B (log odds of differe
ILMN_2726412	Esr1	-2.277655474	6.473039909	<u>-15.6036705</u>	3.94E-08	0.000354148	8.444042165
ILMN_1234415	Prima1	-0.985307272	5.922511303	-8.6208823	8.07E-06	0.004137207	4.138486255
ILMN_2783833	Gm1157	-3.085046066	10.25763503	-8.195526888	1.24E-05	0.00573454	3.742885352
ILMN_2895511	Kcng4	-0.916773398	8.820014735	-7.474888938	2.69E-05	0.009552424	3.022823108
ILMN_2698004	Gck	-1.82891154	6.262887545	-7.388021686	2.96E-05	0.009954142	2.931550936
ILMN_2746870	Nog	-0.69628891	5.575008116	-7.126006382	3.99E-05	0.012596914	2.650141775
ILMN_2739544	Stc2	-1.342463315	7.027091096	-7.097193346	4.13E-05	0.012691305	2.618627264
ILMN_2712668	C230090D14	-0.509987365	11.73148254	-7.054088439	4.34E-05	0.012835171	2.571267566
ILMN_1230396	Zc3hdc6	-0.716443785	8.259988453	-7.020872651	4.51E-05	0.012835171	2.534597927
ILMN_2760468	C230090D14	-0.771836037	6.362214562	-6.596580615	7.45E-05	0.016923645	2.052505123
ILMN_1225229	SIc35e4	-0.774234383	6.757787034	-6.596411795	7.46E-05	0.016923645	2.052308167
ILMN_2679711	Rabl4	-0.667237744	9.322547575	-6.519299525	8.19E-05	0.01799905	1.961908427
ILMN_2803334	Alg2	-0.631338924	8.024634736	-6.499574137	8.39E-05	0.018150562	1.93864412
ILMN_2441534	Tsga2	-1.30528737	7.577639006	-6.368360398	9.86E-05	0.020082437	1.782426861
ILMN_2863362	Mme	-0.651761031	6.078654478	-6.318288424	0.000104977	0.021063814	1.722138623
ILMN_2658208	Setd8	-0.629431679	9.757696505	-6.277640071	0.00011045	0.021599321	1.67292066
ILMN_2603825	Setd8	-0.649898125	9.512540067	-6.127307171	0.000133536	0.023965408	1.488729066
ILMN_2698449	Dtr	-0.607784637	9.035870069	-6.040200797	0.000149264	0.026158932	1.380432058
ILMN_1248959	Tinag	-0.993880079	6.140244205	-5.980790646	0.000161133	0.027680702	1.305902065
ILMN_2881296	Tmem66	-1.071256243	11.00779167	-5.948800929	0.000167944	0.027680702	1.265545954
ILMN_2755443	Sh3kbp1	-0.537838853	9.99593112	-5.936257875	0.000170698	0.027803724	1.249679369
ILMN_2667091	Ppp1r3c	-0.901458163	14.03156243	-5.860796388	0.000188335	0.029630651	1.153709067
ILMN_3001076	Setd8	-0.525905614	10.33957584	-5.809672685	0.000201396	0.031329543	1.088188836
ILMN_1258578	2310047C17Rik	-0.454848465	11.14861774	-5.679750943	0.000239196	0.034859609	0.919846243
ILMN_1232195	1110028E10Rik	-0.412139153	8.524987459	-5.643614717	0.000251021	0.036201937	0.872553859
ILMN_1217723	Stau2	-0.488043202	9.579105896	-5.634241208	0.00025419	0.036281081	0.86025302
ILMN_2922560	SIc16a9	-0.588108227	7.261534577	-5.570052793	0.000277086	0.037786705	0.77564736
ILMN_1238640	2310003H01Rik	-0.590767006	9.060650926	-5.514334487	0.000298765	0.039022712	0.70167979
ILMN_3161419	LOC627585	-0.480763801	5.285061196	-5.466431405	0.000318866	0.039772059	0.637695467
ILMN_2613908	Alox12	-0.622291271	5.913561455	-5.418274376	0.000340547	0.041358534	0.573006443
ILMN_2966162	Tmem56	-0.50897192	10.60424426	-5.411029545	0.000343944	0.041407823	0.563242772
ILMN_2881019	Sh3kbp1	-0.501277423	10.30154117	-5.325876559	0.000386714	0.04499208	0.44786174
ILMN_2874084	Car9	-0.68628721	5.721217354	-5.272718561	0.000416288	0.047608333	0.375251436
ILMN_1220617	Hr	-0.952222415	8.056302289	-5.239345824	0.000436089	0.049086551	0.329437863

Gene expression elevated by muscle ER α deletion compared with Control f/f

Gene expression elevated by muscle ER α deletion compared with Control f/f							
ILMN_2852925	Higd1b	0.598853741	6.741874467	5.230483931	0.000441515	0.049296548	0.317242766
ILMN_2780760	Pknox1	0.408085019	6.961196673	5.267160404	0.000419517	0.047608333	0.367633523
ILMN_2838372	2010111101Rik	0.560150022	7.976222684	5.313921987	0.000393162	0.045361117	0.431571586
ILMN_2426965	Tpm3	0.865956302	8.671598109	5.340772854	0.000378838	0.044449215	0.468128834
ILMN_2604224	Sema5a	0.418780647	6.504126226	5.351395281	0.000373326	0.044176952	0.482559673
ILMN_3009225	Apoc4	1.741132414	5.806519409	5.364176726	0.000366809	0.043779898	0.499899917
ILMN_3074610	C730004C24Rik	0.98603833	5.135629557	5.421293098	0.000339142	0.041358534	0.577072245
ILMN_2973089	Coq3	0.450959924	7.474659009	5.450362445	0.000325931	0.040290262	0.616150896
ILMN_2697749	Glyat	0.85041007	6.382990606	5.469734755	0.000317434	0.039772059	0.642119399
ILMN_1242984	LOC245683	0.598324881	7.452203619	5.481843266	0.000312245	0.039660802	0.658320692
ILMN_1214634	Aqp9	0.840557164	5.139415259	5.483947966	0.000311352	0.039660802	0.661134436
ILMN_2592266	2310009N05Rik	0.497823605	10.14074002	5.493980818	0.000307134	0.039660802	0.674537597
ILMN_2937735	lrak2	0.561623782	7.834088595	5.515557299	0.000298271	0.039022712	0.703308362
ILMN_2710274	SIc9a3r2	0.449430221	10.17514769	5.531951054	0.00029172	0.038835227	0.725119193
ILMN_2832105	Fgg	1.586463246	6.648757379	5.535908216	0.000290162	0.038835227	0.730377588
ILMN_2654700	Drp2	0.649022105	6.284021226	5.566583675	0.000278385	0.037786705	0.7710563
ILMN_2797973	Pgk1	0.487710438	5.767358592	5.57168359	0.000276478	0.037786705	0.777804917
ILMN_2660837	Siat7d	0.624994585	7.048523076	5.589017564	0.000270099	0.037772886	0.800711995
ILMN_2635871	3110057O12Rik	0.704887777	7.176053729	5.592814968	0.000268722	0.037772886	0.805723996
ILMN_1243507	Ssb4	0.803992506	5.794849565	5.71908927	0.000227001	0.033434385	0.971096477
ILMN_1225835	Mfap5	0.564727121	9.04575175	5.725564246	0.000225059	0.033434385	0.979508888
ILMN_2806065	Ankrd2	0.958794958	11.54685999	5.763891499	0.000213924	0.032193238	1.029170093
ILMN_2691059	Cyp2c37	1.413709263	5.727364734	5.785113088	0.000208015	0.031648044	1.056568519
ILMN_1247071	Slc22a1	0.683502696	5.188619269	5.785720724	0.000207849	0.031648044	1.05735198
ILMN_2907540	Lmcd1	0.529719773	12.74069909	<u>5.865883845</u>	0.000187086	0.029630651	1.160206937
ILMN_2655555	Taf9	0.544171166	5.095932542	5.876458617	0.000184519	0.029630651	1.173700532
ILMN_3127335	Sytl2	0.937081321	8.288181434	5.950815547	0.000167506	0.027680702	1.268092121
ILMN_1225699	Serpina1a	0.937753743	5.146544911	5.953045476	0.000167022	0.027680702	1.270909677
ILMN_1219231	Akap1	0.485741131	9.298170107	5.960431248	0.000165432	0.027680702	1.280236254
ILMN_2732401	C130068O12Rik	0.449211146	13.30461459	6.118648723	0.000135016	0.023965408	1.478016108
ILMN_2696171	D830014E11Rik	0.848716145	6.348573611	6.121222626	0.000134575	0.023965408	1.48120195
ILMN_2728473	Serpina3m	0.683309941	5.519770414	6.141890146	0.000131083	0.023965408	1.50674654
ILMN_2770386	Fhl2	0.638539351	5.249988058	<u>6.20361382</u>	0.000121226	0.022680766	1.582649266
ILMN_2828768	Usp28	0.468918176	9.518707654	6.218821891	0.000118923	0.022554584	1.601262268
ILMN_1225873	Slc1a1	1.001269515	7.719435452	6.240886222	0.000115664	0.022241314	1.628204448
ILMN_1228469	Apoc1	2.045885967	7.560372253	6.275358535	0.000110766	0.021599321	1.670150771

ILMN_2955818	Ugt2b36	1.853024782	5.923882464	6.383368051	9.68E-05	0.020006308	1.800423674
ILMN_2734924	1190003J15Rik	1.101645067	5.981411405	6.448128988	8.94E-05	0.018748148	1.877699569
ILMN_2789650	Csrp3	1.183661329	11.28958598	<u>6.466806573</u>	8.73E-05	0.018604273	1.899871145
ILMN_2753029	Gch1	0.650253979	6.127088124	6.567356461	7.72E-05	0.017248636	2.018348291
ILMN_2774563	Mug1	1.368534844	5.33041277	6.683493626	6.71E-05	0.015751412	2.153354321
ILMN_2613038	1110033l14Rik	1.085508191	12.45057323	6.797541924	5.86E-05	0.013981816	2.284037762
ILMN_1259180	Dscr1	1.094526735	8.3697549	<u>6.847529884</u>	5.52E-05	0.0134089	2.340731386
ILMN_1245514	Cyp2c70	1.654420375	5.604496221	6.851668477	5.49E-05	0.0134089	2.345409256
ILMN_2657822	Stat2	0.730806756	5.240634131	6.858335948	5.45E-05	0.0134089	2.352940427
ILMN_1247811	Ass1	0.781026835	7.251030268	6.877631597	5.33E-05	0.0134089	2.374700197
ILMN_1255164	Slco1b2	2.408492256	6.418395089	6.880954456	5.31E-05	0.0134089	2.378442086
ILMN_2742068	Csrp3	1.160151851	11.36891643	<u>6.889526975</u>	5.25E-05	0.0134089	2.388088453
ILMN_2589871	Cd28	0.857021794	5.750423038	6.913433089	5.11E-05	0.0134089	2.414934495
ILMN_1247343	Lmcd1	0.616618276	11.93803288	<u>6.919977791</u>	5.07E-05	0.0134089	2.422270031
ILMN_1234072	Pdlim1	0.782707772	11.50957436	<u>7.013875362</u>	4.54E-05	0.012835171	2.526853532
ILMN_2752524	Paqr9	0.881075506	7.040472056	7.040343643	4.41E-05	0.012835171	2.556112093
ILMN_2704749	Es1	1.054352193	5.812338994	7.123202959	4.00E-05	0.012596914	2.64708051
ILMN_1231765	Cmya1	0.843627567	10.16868429	7.371552326	3.02E-05	0.009954142	2.914133914
ILMN_2916705	Tuba1a	0.613987952	8.810120645	7.428113355	2.83E-05	0.009811187	2.973799288
ILMN_2847061	Slc27a5	0.812643276	5.039893743	7.51408854	2.58E-05	0.009387115	3.063685731
ILMN_2830333	Hpxn	1.105954661	5.558612461	7.529350041	2.53E-05	0.009387115	3.079540408
ILMN_1213817	Mup3	2.796324379	10.1177268	7.534169575	2.52E-05	0.009387115	3.084540961
ILMN_2952275	Arg1	2.123449516	5.977537015	7.566788302	2.43E-05	0.009387115	3.118305456
ILMN_2788223	Kng1	1.846166328	7.794218267	7.610715319	2.32E-05	0.009387115	3.163557694
ILMN_2599794	Apoc1	1.785353866	8.606037905	7.682349623	2.14E-05	0.008987802	3.236820465
ILMN_3159131	Cyp2a5	1.767174907	6.098027092	7.763288413	1.96E-05	0.008490419	3.318811525
ILMN_2993745	Ahsg	2.430013306	6.330040444	7.84604385	1.80E-05	0.008018286	3.40178775
ILMN_3133352	Ung	0.67859964	9.685683581	8.202872819	1.23E-05	0.00573454	3.749896549
ILMN_2840533	Aldob	1.492942539	5.58047853	8.244035893	1.18E-05	0.00573454	3.789065404
ILMN_2645815	Cyp2a12	0.883215487	5.201710906	8.709923684	7.39E-06	0.003933361	4.218689512
ILMN_2789651	Csrp3	1.290126546	9.416025633	<u>8.836374125</u>	6.52E-06	0.003613195	4.331082385
ILMN_1236304	Hamp	2.553088467	6.242150275	8.95166173	5.83E-06	0.003365188	4.432036711
ILMN_2602185	40795	0.765137244	5.810790625	8.999171227	5.57E-06	0.00335434	4.473224342
ILMN_2788221	Kng1	1.572570744	5.850510617	9.43980163	3.68E-06	0.002314376	4.844000915
ILMN_2980371	Es1	1.897095548	5.701402114	9.480549614	3.54E-06	0.002314376	4.877291163
ILMN_1247156	Apoa2	3.481417885	9.463187033	9.555139963	3.31E-06	0.002289433	4.937803731
ILMN_2837080	Azgp1	2.677402425	6.973847797	9.694849363	2.91E-06	0.002122158	5.049679882

ILMN_1235719	LOC231396	2.587061718	6.354844262	9.73824757	2.80E-06	0.002122158	5.084048039
ILMN_2718431	ltih4	1.49688907	5.725354034	9.954857314	2.31E-06	0.001879507	5.252915572
ILMN_2764036	Ahsg	2.531040376	6.093317727	9.994000668	2.23E-06	0.001879507	5.282963367
ILMN_2904137	Ambp	2.784319379	6.884209999	10.2238133	1.82E-06	0.001683418	5.45655142
ILMN_1232567	Fga	2.697542634	6.452350414	11.00730477	9.46E-07	0.00093527	6.01383795
ILMN_2644185	Apof	1.292275019	5.584615195	11.01243614	9.42E-07	0.00093527	6.017320168
ILMN_2678460	Mat1a	2.375178305	6.493208917	11.39133128	6.96E-07	0.000802485	6.268739707
ILMN_2443330	Ttr	2.964318941	8.471966781	11.55506845	6.12E-07	0.000770051	6.373994189
ILMN_1220234	Serpina1e	3.593539271	7.10418024	12.72452138	2.56E-07	0.000354148	7.070693479
ILMN_1225570	Serpina1d	3.922791543	7.824788714	12.84934757	2.34E-07	0.000354148	7.139724057
ILMN_2659680	Serpina1b	3.761521553	8.190775075	12.93341894	2.21E-07	0.000354148	7.185672618
ILMN_1215859	Serpina1b	4.190034574	7.774562696	13.03215526	2.06E-07	0.000354148	7.239084781
ILMN_3004600	Serpina1c	3.842734479	7.217742062	13.07243128	2.00E-07	0.000354148	7.260703081
ILMN_2744565	Hpxn	2.956554723	6.605820876	13.20790998	1.82E-07	0.000354148	7.332710518
ILMN_2624363	Fga	2.922938932	6.539895689	13.30342043	1.71E-07	0.000354148	7.38282369
ILMN_2623393	Apoa1	3.689650158	7.3051642	13.63416558	1.36E-07	0.000354148	7.552305039
ILMN_2651539	Apoc3	3.046626036	6.576112981	14.93852279	5.88E-08	0.000354148	8.163806332

table S5. Primer sequences for qPCR analyses on tissues and for genotyping of Control f/f and MERKO mice.

Q-PCR			
GeneSymbol	NCBI	Forward	Roverso
	Ref.Seq	Forward	Reverse
Acaca	NM_133360	CTGAAGCAGATCCGCAGCTT	GGTGAGATGTGCTGGGTCATG
Acacb	NM_133904	CATACACAGAGCTGGTGTTGGACT	CACCATGCCCACCTCGTTAC
Acadm	NM_007382	GCAGCCAATGATGTGTGTGCTTAC	CACCCTTCTTCTCTGCTTTGGT
Acox1	NM_015729	GCCCAACTGTGACTTCCAT	GGCATGTAACCCGTAGCACT
Atg12	NM_026217		GAAACAGCCACCCCAGAG
Atg4b	NM_174874		AAATGCTGTATTTCTGCCCCA
Atg5	NM_053069	ACAGCITCIGGATGAAAGGC	
Atp5A1	NM_007505	TOTOCATGOOTCTAACACTOG	
C030	NIVI_007643		
Cox/al	NM_0009944		
Chil	NM 025567		CAUCITIGUAGTAGTTGGAACU
Cycr	NM 007808		
Err1	NM 007953		GCGACACCAGAGCGTTCAC
Erra	NM 011035	TIGTACTICIGCCGACCTCC	TGAGATCACAAAGCGCAGAC
Eng Esr1(ex4-5)	NM_007956	GCTACTGTGCCGTGTGCAA	TGTCAATGGTGCATTGGTTTG
Esr1 (ex 3)	NM_007956	GCCAGAATGGCCGAGAGAG	CCCCATAATGGTAGCCAGAGG
Esr2	NM 010157	GCCAACCTCCTGATGCTTCT	TCGTACACCGGGACCACAT
Fasn	NM_007988	TGCTCCCAGCTGCAGGC	GCCCGGTAGCTCTGGGTGTA
Fbx032	NM_026346	TCAGGGATGTGAGCTGTGAC	AAGGAGCGCCATGGATACT
Gata1	NM_008089.1	AGGGCAGAATCCACAAACTG	AGGGCAGAATCCACAAACTG
Gata3	NM_008091.3	GCCTGCGGACTCTACCATAA	CATTAGCGTTCCTCCTCCAG
Gper	NM 029771	CCAAGCCTCAACACTCACACA	CCTGGGAGCCTGTTAGTCTCA
Gpx3	NM 008161	GATGGTGAGGGCTCCATACT	CATCCTGCCTTCTGTCCCT
Lmcd1	NM 144799	ATGGCAAAAGTGGCTAAGGA	TTGCATATTTTCCTCCACGA
Map1lc3b	NM_026160	AATCACTGGGATCTTGGTGG	AGTCAGATCGTCTGGCTCG
Mef2c	NM_025282	GCCGGACAAACTCAGACATTG	GGGTTTCCCAGTGTGCTGAC
mt-Co3	NC_005089	GCAGGATTCTTCTGAGCGTTCT	GTCAGCAGCCTCCTAGATCATGT
Ndufs1	NM_145518	CACTCGTTCCACCTCAGCTA	GACGGCTCCTCTACTGCCT
Nrf1	NM_010938	GAACTGCCAACCACAGTCAC	CGTCTGGATGGTCATTTCAC
Park7	NM_020569	AACACACCCACTGGCTAAGG	GTGCCTCCACAATGGCTAGT
Pik3c3	NM_181414	GTTCAGCTTCATCGGAGGAG	ATTCTTGGAGTTGGAGACCG
Polg1	NM_017462	TAGCTGGCTGGTCCAAGAGT	CGACGTGGAGGTCTGCTT
Ppard	NM_011145	GCCTCGGGCTTCCACTAC	AGATCCGATCGCACTTCTCA
Pparg	NM_011146	GCCCTTTGGTGACTTTATGG	CAGCAGGTTGTCTTGGATGT
Ppargc1	NM_008904	TGAGGACCGCTAGCAAGTTT	TGAAGTGGTGTAGCGACCAA
Ppargc1b	NM_133249	CTGAGTCAAAGTCACTGGCG	GCTCTCGTCCTTCTTCCTCA
Ppia	NM_008907	AGCCAAATCCTTTCTCTCCAG	CACCGTGTTCTTCGACATCA
Sdha	NM_023281	TACTACAGCCCCAAGTCT	TGGACCCATCTTCTATGC
SLC2a4	NM_009204	CCCCCGATACCTCTACATCATC	GCATCAGACACATCAGCCCAG
Sqstm1	NM_011018	I I I CTGGGGTAGTGGGTGTC	CIGAAGAATGTGGGGGGAGAG
Itam	NM_009360	AGCTIGIAAAIGAGGCTTGGA	AGAIGICICCGGAICGTTTC
UIK1	NM_009469	TAGTCAGCCAGGTCTCCACC	
UIK2	NM_013881	TAATCIGCCAGGICICCACC	CAAATICIGCIIGGAAAGGAA
Mitochondrial N	lutations	1	<u>'</u>
Mt-copy		CCTATCACCCTTGCCATCAT	GAGGCTGTTGCTTGTGTGAC
Mt-flanking Tagl	634 site	ACTCAAAGGACTTGGCGGTA	AGCCCATTTCTTCCCATTTC
J			

Genotyping		
Floxed ER α Exon 3	GACTCGCTACTGTGCCGTGTGC	CTTCCCTGGCATTACCACTTCTCCT
CRE transgene	GCATTACCGGTCGTAGCAACGAGTG	GAACGCTAGAGCCTGTTTTGCACGTTC

fig. S1. Real-time respirometry in C2C12 myotubes. (A) Traces of cellular oxygen consumption (OCR), (B) proton leak, and (C) extracellular acidification rate (ECAR) in Control (Scr) and Esr1-KD myotubes (n=6/genotype). Values are expressed as mean ± SEM and differences between genotypes were detected by Student's t-test and repeated measures ANOVA where appropriate, * P<0.05.

fig. S2. Muscle peak tension and time to fatigue. Solues muscle fiber (A) time to fatigue (B) cytochrome oxidase (COX) negative fibers identified only in MERKO muscle (n=5 positive of 6 MERKO mice observed), (C) peak tension, (D) time to peak tension, (E) peak tetanic force, (F) α Actinin protein abundance detected by immunoblotting, and (G) atrogene expression assessed by qPCR. All studies performed in muscle from female Control f/f (open bars) versus MERKO (closed bars) n=6 per genotype. Values are expressed as mean ± SEM and differences between groups were detected by Student's t-test, * *p*<0.05.

С

Soleus- ER α DBD Δ

fig. S3. Polg1 expression is regulated by ER α in muscle. Polg1 expression levels were assessed in (A) C2C12 myotubes treated with ICI (1 μ M) for 24h and in (B) quadriceps muscle from ER α DBD Δ mice by qRT-PCR (normalized to Ppia). (C) Representative low and high magnification electron micrographs of soleus muscle from ER α DBD Δ mice. (D) Transmission electron microscopy of C2C12 myocytes shows elongated and fused mitochondria in Esr1-KD versus Control (Scr), morphology changes similar to that observed in MERKO versus Control f/f mouse muscle. Values are expressed as mean ± SEM and differences between groups were detected by one-way ANOVA , * *P*<0.05 compared to vehicle control.

Α

fig. S4. Altered mitochondrial fissionfusion signaling in ER α -deficient C2C12 mytoubes. (A) AKAP 1 protein abundance in Control (Scr) (open bars) and Esr1-KD (closed bars) myotubes as detected by immunoblotting and (B) densitometric analysis, n=6 / condition. (C) Protein abundance of (D) PKA, (E) DRP1, (F) Mfn1/2, and (G) PINK1 in Control (Scr) and myotubes as detected Esr1-KD by immunoblotting and densitometric analysis, n=6 / condition. Values are expressed as mean ± SEM and differences between groups were detected by Student's t-test and one-way ANOVA where appropriate, * *P*<0.05.

fig. S5. Calcineurin-PKA-Rcan1 axis in C2C12 myotubes with Esr1-KD. (**A**) Calcineurin subunit protein level and **(B**) enzymatic activity in Control (Scr) and Esr1-KD C2C12 myotubes. (C-E) Representative immunoblots (n=3) and corresponding densitometry (n=6) of total and phosphorylated PKA and Rcan1 (1-1, 38 kDa and 1-4, 26 kDa) normalized to GAPDH. (F) Rcan1 expression levels in Control (Scr) and Esr1-KD C2C12 myotubes normalized to Ppia (n=6/genotype). Values are expressed as mean ± SEM, and differences between groups were detected by Student's t-test, * *P*<0.05.

۲0

fig. S6. Expression of autophagy-related genes in muscle. **MERKO** (**A**) Representative immunoblots of LC3BI and II protein in muscle from fed and fasted (24h) Control f/f vs. MERKO mice (n=6 mice per condition). (B-G) Quantitative RT-PCR analyses critical of autophagic effectors in muscle from fed and fasted Control f/f and MERKO mice. n=6 mice/condition. (B) Maplc3b Atg7, (C) Sqstm1/p62, (D) Atg7, (E) Atg12, (F) Atg5, and (G) Atg4b muscle expression levels at basal and following fasting (24-h) in female Control f/f vs. MERKO mice (n=6 mice/condition). (H-I) p62 and LC3BI and II protein levels in Control (Scr) and Esr1-KD myotubes at basal and following bafilomycin A_1 (BafA₁, 25nM) treatment (n=3-6/condition). Values are expressed as mean ± SEM and differences between groups were detected by Student's t test oneway ANOVA. *P<0.05 difference between genotypes. # P<0.05 within group, between treatment difference.

fig. S7. Autophagic flux studies in C2C12 myocytes with Esr1-KD. Flow cytometry analyses were performed on myocytes infected with tandem labeled Gfp-Rfp-Lc3b and exposed to nutrient deprivation (starvation) in the presence or absence of BafA₁. Representative FACS plots depicting autophagic flux in Scr-Control and Esr1-KD C2C12 myocytes under basal conditions (A-B), and following 4-hour nutrient deprivation (starvation) without (C-D) or with 4-hour BafA₁ treatment (E-F). Gates defining GFP-RFP double-positive and RFP singlepositive cells show reduced autophagosome turnover (loss of GFP-RFP signal) and autolysosome formation (RFP single-positive signal) at basal and following starvation in Esr1-KD myocytes. Values presented in the far corners of quadrants indicate percent cells in each quadrant. Studies were performed in triplicate.