	Pbx1-d Tg				Sle1a1			
	Young		Old		Young		Old	
	GFP (+)	GFP(−)	GFP (+)	GFP(−)	GFP (+)	GFP(−)	GFP (+)	GFP(-)
miR-17	1.88	0.88	1.58	1.09	* 11.3	0.63	1.59	0.87
	± 0.45	± 0.24	± 0.30	± 0.49	± 9.11	± 0.30	± 0.50	± 0.23
miR-19a	1.42	0.93	1.14	0.77	* 3.75	0.70	* 1.64	0.90
	± 0.37	± 0.28	± 0.27	± 0.31	± 1.25	± 0.41	± 0.30	± 0.27
miR-19b	1.30	0.99	1.23	1.00	* 2.93	0.67	* 1.86	0.78
	± 0.28	± 0.17	± 0.16	± 0.49	± 0.91	± 0.52	± 0.23	± 0.23
miR-20a	1.16	0.85	3.61	1.37	* 6.80	0.70	* 2.16	0.89
	± 0.28	± 0.26	± 2.16	± 0.44	± 4.78	± 0.41	± 0.34	± 0.14
miR-92	1.24	1.00	2.90	1.01	* 3.46	0.58	* 1.60	1.08
	± 0.18	± 0.15	± 1.59	± 0.22	± 1.66	± 0.19	± 0.14	± 0.36
miR-181a	1.59	* 1.45	* 0.65	2.31	* 2.22	1.60	0.74	2.50
	± 0.43	± 0.10	± 0.08	± 1.66	± 0.30	± 0.55	± 0.26	± 1.30
miR-181b	* 1.94	1.45	* 0.77	2.01	* 1.61	* 1.73	0.81	2.40
	± 0.33	± 0.17	± 0.04	± 1.23	± 0.29	± 0.47	± 0.22	± 1.16

Supplemental Table 1. miRNAs expression in GFP⁺ FOXP3⁺ and GFP⁻ FOXP3⁻ CD4⁺ T cells in 2~3 or 7~8 month-old *Pbx1-d* Tg and B6.*Sle1a1* relative to B6 mice (N = 3-4 mice per group).

*p< 0.05

Supplemental Figure 1. Production of Pbx1-d Tg mice. A. Tg construct. **B.** Tg copy number calculated for each of the 4 hemyzygous and homozygous lines (n = 4) using a *Pbx1-d* Taqman probe and a *Pbx1-d* plasmid standard curve. **C.** *Pbx1-d* message expression in splenic CD4⁺ and CD8⁺ T cells isolated from B6 and A886 *Pbx1-d* Tg mice with *Gapdh* shown as control (n = 3).

Supplemental Figure 2. Cytokine production by *Pbx1-d* Tg CD4⁺ T cells. Intracellular staining of CD4⁺ T cells isolated from the spleens of 2 month-old B6 (grey filled histograms) and *Pbx1-d* Tg (open histograms) mice and stimulated with PMA and ionomycin. Representative histograms (**A**) and mean fluorescence intensity (MFI) each of the cytokines (**B-E**). Each symbol represents a mouse. Intracellular IFN γ (**F**) and IL-7A (**G**) in B6 and *Pbx1-d* Tg CD4+ T cells polarized under T_H1 and T_H17 conditions, respectively (n = 3). ** *P* < 0.01.

Supplemental Figure 3. Expansion of Pbx1-d.OT-II and Sle1a1.OT-II T cells 7 days after OVA immunization. A. Percentages of CD45.2⁺ donor B6.OT-II or *Pbx1-d* Tg.OT-II cells and CD45.1⁺ recipient T_{FH} cells. B. Numbers of CD45.2⁺ donor B6.OT-II or *Pbx1-d* Tg.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Pbx1-d* Tg.OT-II T cells. D. Representative 20x spleen sections of B6.OT-II or *Pbx1-d* Tg.OT-II cell recipients, as in Fig. 4D. E. Percentages of CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II cells and CD45.1⁺ recipient T_{FH} cells. F. Numbers of CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. S. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{FH} cells. C. Numbers of total CD45.2⁺ donor B6.OT-II or *Sle1a1*.OT-II T_{CElls}. **P* < 0.05, ***P* < 0.01.