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I. THE ROLE OF THE PERIODIZATION PROCEDURE IN CAPTURING CORRECT SPECTRAL
PORTRAITS

In this Section, we use the example of the dam-break problem to show that the “local periodized” numerical IST
analysis enables one to capture the asymmetry of the interaction of a local coherent structure with the surrounding
wave field. Moreover, we demonstrate that the procedure of periodization is essential for getting the correct spectral
signature of the local coherent structures under consideration.
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Figure S1: Dam break problem. (a) Space-time diagram showing the evolution of the power |ψ(x, t)|2 of the wave while starting from the
“box” initial condition given by Eq. (4) of our manuscript. (b) Numerical IST analysis of some waveforms. The power profile |ψ(x, t)|2 at time
t = 10.92 is plotted in red in the left column. In the two top rows, the parts of the profiles that are highlighted in blue around x = 0 and x = −10
represent the elementary patterns that are periodized to produce waveforms shown in the central column. The spectral portraits plotted in the
right column are computed from the numerical IST analysis of the periodic waveforms shown in the central column (numerical IST analysis made
over 500 periods). In the two bottom rows, the parts of the profiles highlighted in blue around x = 0 and x = −10 represent the elementary
patterns that are directly analyzed by IST without using the periodization procedure.

Fig. S1(a) shows the spatio-temporal evolution of the power |ψ(x, t)|2 corresponding to the dam-break problem
considered in the article. The first row in Fig. S1(b) is identical to the third row of Fig. 4(b) of the article: it
represents the result of the IST analysis of the peak localized around x = 0 at t = 10.92 and shows that the local IST
spectrum exhibits a symmetric genus two signature (since it is made of 3 symmetric main bands). The second row
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of Fig. S1(b) represents the result of the IST analysis of the peak localized around x = −10 (t = 10.92). The IST
analysis of the periodized waveform reveals that this coherent structure is approximated by a genus 2 solution of the
1D-NLSE too. However, in contrast to the peak localized around x = 0, the IST spectrum has lost the symmetry
with respect to the imaginary axis (Re(ξ) = 0) because the analyzed structure is no longer spatially symmetric. This
asymmetry of the spectrum reflects the asymmetry of the interaction of the chosen local coherent structure with the
surrounding wave field and is acutely captured by our periodized procedure.

Summarizing, the “local periodized” numerical IST analysis of the dam break (barrier) problem shows that the
coherent structures emerging at intermediate times within certain x, t-region can be classified as genus 2 solutions of
the 1D-NLSE. The numerically found local IST spectrum is in full agreement with the theoretical results of Ref. [1].
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Figure S2: Numerical IST analysis of a KM soliton (Eq. (7) of our manuscript, φ = π/4) by using different methods. (a) (b) IST analysis of the
KM soliton in a small box having a size l = 10. (c), (d) IST analysis of the KM soliton in a large box having a size L = 400. The KM soliton
is truncated to its central core part in a small box having a size l = 10. ψ(x) is set to zero outside this small box, as shown in (d). (e), (f) IST
analysis of the KM soliton that has been periodized (spatial period Λ = 10), as in Fig. 3 of our manuscript.

As explained in the article, performing a IST analysis of an isolated localized structure without applying the
periodization procedure amounts to ignoring the nonlinear interaction between this isolated structure and the
surrounding wave field. If some coherent peaks are isolated at different spatial positions X (but at a given time in
the dam break problem) and if their IST analysis is numerically made without using the periodization procedure,
we typically obtain spectra that include two complex conjugate eigenvalues, as illustrated in the two bottom rows of
Fig. S1. Thus, the IST spectrum of a coherent structure appearing locally similar to some SFB is essentially (up to
some amount of the continuous component) identical to the IST spectrum of a fundamental soliton living on a zero
background when the IST analysis is made without using the periodization procedure introduced in our paper. This
means that, by truncating an isolated peak and making the IST analysis in a box having the size l comparable to the
size of this peak, the effect of the nonlinear interaction of the isolated object with the neighbors is lost. As a result,
in these conditions, the numerical IST analysis does not yield the correct IST spectrum.

This important conclusion is supported by the IST analysis of standard SFBs. Figures S2 and S3 show the
results of the numerical IST analysis of the KM soliton and PS respectively, using different procedures (truncation
vs periodization) for the structure under study. Without the periodization procedure, the IST analysis of an isolated
KM soliton (resp. PS) made in a box having a size l = 10 comparable to the typical spatial size (∼ 1) of the KM
soliton (resp. PS) provides only a few discrete imaginary eigenvalues without capturing the correct spectrum, see Fig.
S2(a)(b) (resp. Fig. S3(a)(b)). Still not applying the periodization procedure and performing the IST analysis of a
PS or of a KM soliton that have been truncated to their central core part to be subsequently placed in a box having
a size L much bigger than the size l of the central core part, only a few discrete eigenvalues are again obtained but
the correct specrum is not captured by this procedure, see Fig. S2(c)(d) and Fig. S3(c)(d). On the other hand, Fig.
S2(e)(f) demonstrates the efficiency of the periodization method for the correct determination of the IST spectrum of
the KM soliton. Figs. S3(e)(f) show that the periodization procedure is similarly essential for capturing the correct
spectral signature of the PS.
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Figure S3: Numerical IST analysis of a Peregrine soliton (PS) (Eq. (6) of the manuscript, φ = 0) by using different methods. (a) (b) IST analysis
of the PS in a small box having a size l = 25. (c), (d) IST analysis of the PS in a large box having a size L = 800. The PS is truncated to its
central core part in a small box having a size l = 25. ψ(x) is set to zero outside this small box, as shown in (d). (e), (f) IST analysis of the PS
that has been periodized (spatial period Λ = 25).

II. USE OF CONVENTIONAL FITTING PROCEDURES FOR APPROXIMATING COHERENT
STRUCTURES FOUND IN THE PROBLEM OF NOISE-DRIVEN MODULATIONAL INSTABILITY

In the problem of noise-driven modulational instability, the standard procedure used for the identification of coherent
structures is based on the best fit methods [2–5]. Simple analytical expressions describing the PS, the AB or the KM
soliton (Eq. (6) or (7)) are usually used, and the parameters defining these expressions are adjusted to get the best
possible matching between the exact SFB solution and the coherent structure that is analyzed. With this approach,
strong assumptions must be made about the nature of the function that is chosen for fitting the coherent stucture
under investigation.

Fig. S4(a) shows that the power profile |ψ(x, t)|2 of the coherent structure CS1 found in Fig. 5 can be well fitted
by the analytical expression associated to the power profile of the PS (Eq. (6), φ = 0, t = 0). As shown in Fig. S4(b),
the phase profile Φ(x, t) = Arg(ψ(x, t)) of CS1 (red line) is also found to be in reasonable quantitative agreement with
the phase profile (blue line) of the exact PS (ψ(x, t) = |ψ(x, t)| exp(iΦ(x, t))). Despite differences of relatively small
importance between the profiles found in numerical simulations and the theoretical profiles characterizing the PS, the
IST spectrum of CS1 is found to exhibit significant qualitative and quantitative differences with the IST spectrum
of the PS (compare IST spectrum of CS1 in Fig. 5(b) with IST spectrum of the PS in Fig. 2(c)). In particular the
local IST analysis demonstrates that CS1 cannot be identified as a genus 2 solution of the 1D-NLSE but as a genus 4
solution. This demonstrates that local IST analysis is a very sensitive tool that is able to capture accurate signatures
of coherent structures found in random wave trains.

Waveforms plotted in red lines in Fig. S4(c) and in Fig. S4(d) represent the power and the phase profiles of
the coherent structure CS3 found in Fig. 5. These profiles can be very well fitted by the analytical expression
characterizing the AB (Eq. (6), φ = π/6, t = 0.21). The differences between the fitted profiles and the actual profiles
are very small in the specific case of CS3. Although the IST local analysis reveals that CS3 is a genus 2 solution of
the 1D-NLSE (see Fig. 5(b)), the IST spectrum of CS3 does not, however, coincide with the IST spectrum of an AB,
see Fig. 2(b).

The power profile of the coherent structure CS4 can be very well fitted by using a second-order rational solution
of the 1D-NLSE (Eq. (4) of ref. [5], t = −0.062), see Fig. S4(e). The phase profile of CS4 (red line) coincides over
a wide spatial range with the phase profile of the second-order rational solution of the 1D-NLSE (blue line), see Fig.
S4(f). However the existing differences between the actual and the fitted profiles explain why the IST spectrum of
CS4 is far from being degenerate (i.e. the 5 bands of the IST spectrum of CS4 do not merge along the imaginary
vertical axis, see Fig. 5(b)). Therefore, CS4 should be identified as a general genus 4 solution of Eq. (1) that differs
from the very specific degenerate analytical solution found in ref. [5].

Note that we have not been able to fit in a correct way the coherent structure CS2 found in Fig. 5 by simple
analytical expressions describing SFBs or solitons living on zero background. This is consistent with the fact that the
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IST spectrum of CS2 is “far” from IST spectra of SFBs or solitons on zero background, see Fig. 5(b) and Fig. 2.
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Figure S4: Left column: power profiles (red lines) |ψ(x, t)|2 of three of the coherent structures (CS1, CS3, CS4) isolated in
Fig. 5. Right column: phase profiles (red lines) Φ(x, t) = Arg(ψ(x, t)) of three of the coherent structures (CS1, CS3, CS4)
isolated in Fig. 5. In (a), (b), the coherent structure CS1 is fitted (blue lines) by using the function describing a PS (Eq. (6),
φ = 0, t = 0). In (c), (d), the coherent structure CS3 is fitted (blue lines) by using the function describing an AB (Eq. (6),
φ = π/6, t = 0.21). In (e), (f) the power profile of CS4 is fitted (blue lines) by using a function describing a second-order
rational solution of the 1D-NLSE (Eq. (4) of ref. [5], t = −0.062)
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