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Supplimentary materials for methods1

Study area2

Figure S1: Study sites (points) were located on the southern shores of Haida Gwaii (formely
the Queen Charlotte Islands) off the northwest coast of British Columbia, Canada. The
boundaries of the Gwaii Haanas National Marine Conservation Area Reserve (NMCAR) and
Haida Heritage Site are shown in light gray.

Survey methods3

Surveys were undertaken in the summer (between late June and early August) each4

year from 2009 to 2012, with the majority of sites surveyed every year, yielding a total5

of 37 unique combinations of site and year in the dataset (a full summary of survey6

protocol is provided in [1]). Four to six 30 m long by 4 m wide belt transects were7

surveyed at each site in each year (four at each site in 2009, six at each site in 2010,8

2011 and 2012), split evenly between ‘deep’ and ‘shallow’ strata (tide-corrected depth9

of 12.0 ± 1.3 m and 7.7 ± 1.1 m below chart datum respectively). Transects were10
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deployed parallel to shore, with the ends of each transect separated by a minimum of 511

m. For each transect an individual diver deployed a plastic transect meter tape while12

swimming forward at an approximately constant speed [2], recording conspicuous fishes13

present in the sampling area (all fishes other than blennies, gobies, gunnels and other14

small cryptic species, table S1). Count time was not standardised as it was dependent15

on fish abundance and habitat characteristics.16

Sample processing and stable isotope analysis17

In the laboratory, white muscle tissue samples were thawed, rinsed with 10% HCl18

followed by de-ionised water, and oven dried for 48 hours at 60°C. Samples were then19

manually ground to a fine powder and 1 ± 0.2 mg portions were packaged into 5 x 3.520

mm tin capsules. δ13C and δ15N values for packaged samples were measured using a21

PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20–20 isotope22

ratio mass spectrometer. δ13C and δ15N were calculated as:23

δ15X =
(

Rsample

Rstandard
− 1

)
× 100024

where Rsample and Rstandard are the ratio of heavy:light isotopes (13C:12C and 15N:14N)25

in the sample and the international standard (V-PBD for C and air for N) respectively.26

δ units are parts per thousand (‰). Stable isotope analyses were conducted by the UC27

Davis Stable Isotope Facility (SIF).28

In this study we implicitly assumed that a shared isotopic baseline for δ15N was rep-29

resentative of all fish sampled. This assumption was supported by the observation of30

a mean δ15N of 10.32 (n = 47, s.d. = 0.4) for rock scallops (Crassodoma gigantea)31

that were opportunistically collected at the same sites where fish were sampled (plac-32

ing them one trophic level below the smallest fish sampled). Because they are among33

the longest-lived filter-feeding invertebrates present on the reefs of Haida Gwaii, rock34

scallops provide a time-integrated baseline estimate for δ15N for this system.35
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Zero-handling in biomass spectrum fits36

In this manuscript we follow the precedent in the literature of treating size classes37

in which no biomass was observed as empty rather than as zeros in fitting biomass38

spectra. In order to determine whether our conclusions were sensitive to this decision39

we fit a second model in which we populated empty bins for a given location/year40

with a biomass equal to half the minimum of the biomass observed in that bin across41

other locations/years. Doing so resulted in a decreased slope estimate (0.33, 95% CIs42

0.03–0.62) but does not affect our conclusions.43

Bayesian hierarchical approach to estimate community predator-44

to-prey mass ratio45

We used a Bayesian hierarchical approach to model the community relationship between46

trophic position and body-size, and estimated the community mean PPMR from the47

posterior distribution of slopes of this relationship. Our calculation of PPMR from the48

slope of the community relationship between trophic position and body-size followed49

[3]. Adopting a Bayesian hierarchical approach allowed us to account for the nested50

nature of the data (species sampled within locations) and to explicitly incorporate im-51

portant sources of uncertainty, including instrument error in measurements of δ15N and52

uncertainty in the assumed rate of δ15N fractionation (∆15N) with increasing trophic53

position.54

Preliminary exploratory analyses fitting models with the R package lme4, and not55

accounting for measurement error, indicated that a random-effect structure allowing56

slope to vary randomly with species and an intercept to vary randomly with species57

and area was best supported by the data (lowest AIC). We retained this random-effect58

structure in the Bayesian model that we describe below. These preliminary analyses59

also indicated minimal correlation between random slopes and intercepts. Therefore,60

for simplicity, we proceeded with a Bayesian hierarchical model that did not model61

correlation between random effects.62
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To build our model, we first assigned each individual fish for which δ15N was measured63

into log2 body mass classes (log2 M). We centered the log2 M predictor by subtract-64

ing the mean to reduce correlation between random effect intercepts and slopes then65

modeled δ15N as (with N denoting normal distributions, σ and τ denoting standard66

deviations about the means):67

δ15Ntrue
i = α + αj + αk + (β + βj) · log2 Mi + εi,68

For i = 1, . . . , N observations, j = 1, . . . , J species, k = 1, . . . , K locations,69

αj ∼ N (0, σ2
α), βj ∼ N (0, σ2

β), αk ∼ N (0, τ 2
α), εi ∼ N (0, σ2).70

We incorporated measurement error around δ15Ntrue
i as:71

δ15Nmeasured
i ∼ N (δ15Ntrue

i , 0.04),72

where δ15Nmeasured
i represents a measured value of δ15N and 0.04 represents the assumed73

measurement variance (based on personal communication from the UC Davis SIF).74

We chose non-informative normal priors on {α, αj, αk, β, βj} ∼ N (0, 106), a uniform75

prior U(0, 100) on the residual standard deviation σ, and weakly informative half-76

Cauchy priors with scale parameters of 10 on the standard deviation parameters σα, σβ77

and τα to constrain the parameter to reasonable values and aid computation [4]. The78

shape the half-Cauchy priors (lines; scale parameter of 10) used on standard devia-79

tion hyperparameters is shown below overlain on their observed posterior distributions80

(bars). The priors are unlikely to drive the posterior distributions of the standard devi-81

ation hyperparameters as they allow for far greater values than the data suggest, while82

somewhat limiting extreme values and thereby aiding computation:83
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We then estimated PPMR incorporating uncertainty in fractionation rate (∆15N) as:84
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PPMR = 2∆15N/β, ∆15N ∼ N (µ∆15N, σ
2
∆15N).85

We assumed a mean fractionation (µ∆15N) of 3.2 ‰ with a standard deviation (σ∆15N)86

of 1. 3.2 ‰ has been recommended as an assumed value for fish white muscle tissue87

[5], and adding a wide standard deviation around this assumed mean encompasses the88

other widely recommended value of 3.4 ‰ [6, 7] as well as making our PPMR estimate89

robust to emerging evidence that fractionation rate may vary with body-size and species90

(although such variation is likely to be small within the range of body-sizes considered91

here; [8, 9]).92

We drew samples from the posterior distribution of all parameters using JAGS [10]. We93

ran 100,000 iterations with three chains, discarded the first 50,000 iterations as burn in,94

and recorded every 10th iteration value thereafter for a total of 15,000 posterior samples.95

We assessed chain convergence with the Gelman-Rubin diagnostic (all were below 1.1)96

and visual inspection of the chains [11] and performed graphical posterior predictive97

checks (as shown below) to ensure our probability model could recreate similar data [11].98

These show realizations of the parameter vector θ from the posterior samples. The left99

panel corresponds to the observed data and the two panels to the right correspond to100

replicated datasets simulated from the model. The colours represent different species.101

The replicated datasets yrep resemble our original dataset y and we do not observe102

systematic differences in the datasets:103
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We also examined the residuals from two example MCMC draws arranged along the104

the predictor (log2 M) and shown by species (with colour for area):105
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And by area (with colour for species):106
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The lack of structure of the residuals in both representations indicates that there is107

not systematic unaccounted-for variation associated with either location or species that108

may be biasing the models.109

We performed a jackknife procedure to evaluate sensitivity of estimated PPMR to the110

individual species included in the analysis. For each jackknife we ran 10,000 model111

iterations with 3 chains, discarding the first 5000 as burn-in and keeping every 5th
112

iteration value thereafter for a total of 3000 saved samples per jackknife.113

The JAGS code for the model was:114

model {115

# Priors116

b0 ~ dnorm(0, 1.0E-6) # intercept117

b1 ~ dnorm(0, 1.0E-6) # slope118

sigma_res ~ dunif(0, 100) # residual SD119

120

# weakly informative priors (Gelman 2006)121

# half-Cauchy with scale parameter of 10122

sp_b0_sd ~ dt(0, 1/(10*10), 1) T(0, ) # species intercept multilevel SD123

sp_b1_sd ~ dt(0, 1/(10*10), 1) T(0, ) # species slope multilevel SD124

ar_b0_sd ~ dt(0, 1/(10*10), 1) T(0, ) # location intercept multilevel SD125

126

# Transformations from variance to precision127
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tau_res <- pow(sigma_res, -2)128

frac_tau <- pow(frac_sd, -2)129

sp_b0_tau <- pow(sp_b0_sd, -2)130

sp_b1_tau <- pow(sp_b1_sd, -2)131

ar_b0_tau <- pow(ar_b0_sd, -2)132

d15N_tau <- pow(d15N_sd, -2)133

134

# Multilevel effects for species135

for (j in 1:N_sp) {136

sp_b0[j] ~ dnorm(0, sp_b0_tau) # intercepts137

sp_b1[j] ~ dnorm(0, sp_b1_tau) # slopes138

}139

140

# Multilevel effects for location141

for (k in 1:N_ar) {142

ar_b0[k] ~ dnorm(0, ar_b0_tau) # intercepts143

}144

145

# Likelihood data model146

for (i in 1:N) {147

y_hat[i] <- b0 + sp_b0[sp[i]] + ar_b0[location[i]] +148

(b1 + sp_b1[sp[i]]) * log_m[i] # predicted delta 15 N149

obs_delta[i] ~ dnorm(delta[i], d15N_tau) # measurement error on d15N150

delta[i] ~ dnorm(y_hat[i], tau_res) # likelihood model151

}152

153

# Derived values154

frac ~ dnorm(frac_mu, frac_tau) # fractionation rate with error155

ppmr_exponent <- frac / b1 # exponent in PPMR equation156

157

# Predictions at location random effect of zero158

for (i in 1:N) {159

y_hat2[i] <- b0 + sp_b0[sp[i]] +160

(b1 + sp_b1[sp[i]]) * log_m[i] # predicted delta 15 N161

}162

163

# Fixed effect predictions at smoothed set of log_m164

for (h in 1:N_pred) {165

y_hat3[h] <- b0 + b1 * log_m_pred[h] # predicted delta 15 N at smoothed log_m166

}167

}168
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Biomass-weighted hierarchical linear model for the estimation169

of community PPMR170

We also evaluated a biomass-weighted hierarchical linear model to estimate community171

PPMR. Using visual survey data, we calculated the proportion of the total observed172

biomass in each size bin contributed by each species in each location (with biomass173

from all survey observations summed within locations). These proportions were then174

matched to isotope samples based on the species from which it was obtained, its mass,175

and the location where it was sampled, and included as weightings in a hierarchical176

linear model for the relationship between trophic position and individual body mass,177

fit using the R package lme4 [12]. Not all species for which isotope samples were178

obtained were observed on visual surveys. Further, not all species that were observed179

on surveys were observed at all sizes in all locations. Therefore, we used the following180

decision rules to assign missing weightings:181

1. If a species was not observed on visual surveys for a given log2 size-class in one182

location, but was observed in that size-class in other locations, isotope samples183

for the size-class/location combinations where it was not observed were assigned184

the mean weighting for that size-class from those locations where it was observed.185

2. If a species was not observed in a given log2 size-class in any location, isotope186

samples for that species/size-class were assigned a weighting of half of the lowest187

weighting from all other species observed in that size-class and location.188

3. If no fish of any species were observed in a log2 size-class in any location, samples189

were assigned a weighting of 0.5190

Using these weightings, we modeled biomass spectra as hierarchical linear regression191

with log2 (M) as the predictor and log2 δ
15N as the response. The spatially nested192

sampling design was accounted for by allowing intercept to vary randomly with location.193

Slope and intercept were allowed to vary randomly by species. PPMR was calculated194

from the global regression slope (β) as PPMR = 2∆15N/β assuming a fractionation rate195

(∆15N) of 3.2 ‰.196
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We recognise that our Bayesian methodology is potentially susceptible to bias since the197

data were not weighted by their proportional contribution to total community biomass.198

However, the fact that we obtained an almost identical PPMR estimate (5861) using a199

biomass weighted hierarchical linear model gives confidence that the PPMR estimate200

we obtained from the Bayesian model accurately reflects the true community PPMR.201

The insensitivity of the PPMR estimate to species weightings is a result of the fact that202

species-level slopes for the relationship between trophic position and body size are all203

similar (and positive) in this system (figure S3). Weighting by biomass would be more204

important if slopes varied widely among species, as observed in the North Sea [13], and205

developing methods that both account for uncertainty and allow for species biomass206

weightings will be an important goal for future studies.207

Supplementary materials for results208

Species surveyed and sampled209
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Model results210

Figure S2: Probability density plots from the jackknife analysis showing the distribution of
PPMR estimates obtained, excluding one species at a time from the model. Colour coding
indicates the individual species excluded in each iteration. The single line that is slightly
distinct from the others represents Yellowtail rockfish.
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Figure S3: Species-level slope estimates from weighted hierarchical linear model fit with
lmer vs. the non-weighted hierarchical Bayesian model fit using JAGS that incorporates mea-
surement errors. The global slope estimates are shown as coloured vertical lines and are
nearly the same. Area of dots is pro‘’portional to the weights for lmer model points and held
constant for JAGS model points. Confidence intervals are +/- 1.96 random effect standard
errors for lmer and 2.5 and 97.5 quantiles for JAGS. Estimates are ordered by decreasing JAGS

estimate from top to bottom.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Yellowtail rockfish

Halibut

Painted greenling

Quillback rockfish

China rockfish

Copper rockfish

Vermilion rockfish

Brown rockfish

Black rockfish

Canary rockfish

Bocaccio

Kelp greenling

Silvergrey rockfish

Lingcod

Yelloweye rockfish

Red Irish lord

Cabezon

0.00 0.25 0.50
Species−level slope

model

●

●

Weighted lmer

JAGS

mean_weight

●

●

●

●

0.1

0.2

0.3

0.4

14



References211

[1] Trebilco R, Demes KW, Lee LC, Keeling BE, Sloan NA, Stewart HL, Salomon212

AK, 2014 Summary of Baseline Kelp Forest Surveys Within and Adjacent to Gwaii213

Haanas National Park Reserve, National Marine Conservation Area Reserve and214

Haida Heritage Site, Haida Gwaii, British Columbia, Canada. Can. Data Rep.215

Fish. Aquat. Sci. 1252. www.dfo-mpo.gc.ca/Library/352932.pdf216

[2] Watson RA, Carlos GM, Samoilys MA, 1995 Bias introduced by the non-random217

movement of fish in visual transect surveys. Ecol. Model. 77, 205–214218

[3] Jennings S, Mackinson S, 2003 Abundance-body mass relationships in size-219

structured food webs. Ecol. Lett. 6, 971–974220

[4] Gelman A, 2006 Prior distributions on variance parameters in hierarchical models.221

Bayesian Analysis 1, 515–533222

[5] Sweeting C, Barry J, Barnes C, Polunin N, Jennings S, 2007 Effects of body size223

and environment on diet-tissue δ15N fractionation in fishes. J. Exp. Mar. Biol.224

Ecol. 340, 1–10225

[6] Minagawa M, Wada E, 1984 Stepwise enrichment of 15N along food chains: Further226

evidence and the relation between δ15N and animal age. Geochimica et Cosmochim-227

ica Acta 48, 1135–1140228

[7] Post D, 2002 Using stable isotopes to estimate trophic position: models, methods,229

and assumptions. Ecology 83, 703–718230

[8] Wyatt A, Waite A, Humphries S, 2010 Variability in Isotope Discrimination Factors231

in Coral Reef Fishes: Implications for Diet and Food Web Reconstruction. PLoS232

One 5, e13682233

[9] Hussey NE, MacNeil MA, McMeans BC, Olin JA, Dudley SFJ, Cliff G, Wintner234

SP, Fennessy ST, Fisk AT, 2014 Rescaling the trophic structure of marine food235

webs. Ecol. Lett. 17, 239–250236

15



[10] Plummer M, 2003 JAGS: A program for analysis of Bayesian graphical models237

using Gibbs sampling. In Proceedings of the 3rd International Workshop on Dis-238

tributed Statistical Computing (DSC 2003). Version 3.4.0239

[11] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB, 2014 Bayesian240

Data Analysis. Chapman & Hall241

[12] Bates D, Maechler M, Bolker B, Walker S, 2013 lme4: Linear mixed-effects models242

using Eigen and S4. R package version 1.0-5243

[13] Jennings S, Pinnegar J, Polunin N, Boon T, 2001 Weak cross-species relationships244

between body size and trophic level belie powerful size-based trophic structuring245

in fish communities. J. Anim. Ecol. 70, 934–944246

16


