Supplementary Figure 1

2-acetamido-6-hydroxypurine Log₁₀[mM]

(b)

Supplementary Figure 1. Riboswitch reporters respond to guanine analog 2-acetamido-6hydroxypurine. (a) EK1 was grown in Bacillus media to log phase in varying concentrations of 2acetamido-6-hydroxypurine (2A6HP) or vehicle alone and reporter activity was measured by Miller assay. (b) EK2 was grown to log phase in CDM as described in (a). (c) EK1 was grown to log phase in Bacillus media containing vehicle, or 1mM exogenous guanine, 2,4-diaminopyrimidine, 2,4,6triaminopyrimidine, 2,6-diaminopyrimidine, 2A6HP, or 2,4,5,6-tetraaminopyrimidine and reporter activity was measured by Miller assay. (d) EK2 was grown in CDM as described in (b). (e) Growth of WT *S. aureus* was monitored by optical density over 24 hours in CDM containing vehicle (0.002M NaOH) alone, vehicle + 1mM DTT, 1mM PC1, or 1mM 2A6HP. (f) Growth of WT *S. aureus* in TSB containing vehicle, or 1mM 2A6HP was monitored by optical density over 24 hours. Data are presented as mean+/- S.D. (n=3) (Student's t-test; $p < 0.05^*$, $p < 0.01^{**}$, $p<0.001^{***}$).

Supplementary Figure 2. Activity of S. aureus and B. subtilis xpt-lacZ transcriptional reporters stably integrated in S. aureus NRS384. Transcriptional reporter activity was measured in the parental S. aureus NRS384 Δ hsdR Δ sauUSI (S.a.) strain, and reporter strains S. aureus NRS384 Δ hsdR Δ sauUSI Φ 85att::pIMC85-B.s. xpt(-305)lacZ (EK17; B.s. xpt-lacZ) and S. aureus NRS384 Δ hsdR Δ sauUSI Φ 85att::pIMC85-S.a. xpt(-452)lacZ (EK3; S.a. xpt-lacZ) and grown to log phase in CDM by Miller assay. Comparison of B.s. xpt-lacZ (EK17) and the parental S. aureus NRS384 Δ hsdR Δ sauUSI (S.a.) strain shows that the B. subtilis xpt-reporter is not active in the heterologous host S. aureus (P = 0.3274), in contrast to S.a. xpt-lacZ (P<0.0001****). Data are presented as mean +/- S.D. of biological triplicates. Statistical significance determined using student's t-test.

(b)

Supplementary Figure 3. Identification of the guaB transcriptional start site by 5'rapid amplification of cDNA ends (5'-RACE). (a) Total RNA was harvested from *S. aureus* grown to log phase in tryptic soy broth with (+), or without (-) 0.25mM exogenous guanine followed by first-strand cDNA synthesis, poly-A tailing with terminal deoxynucleotidyl transferase, and sequential nested PCR. The first PCR contained gene-specific primer 1(GSP1) combined with bridging primer QT that contains a poly-dT 3'-tail, followed by GSP2/QI, and GSP3/QI. PCR products were separated in a 0.8% agarose gel and stained with ethidium bromide and identified a single ~300bp product. (b) 5'-RACE products were TA cloned into pCR2.1-TOPO and screened for white colonies indicating an insert that disrupted lacZ expression. Plasmid DNA isolated from these clones were digested with Notl/ BamHI to verify insertion of products, and sequenced (c) using M13F and M13R primers to identify the transcriptional start site of *guaB*. Sequence analysis was performed using Sequencher software. Agarose gel panels were from a single gel, but images were cropped to remove lanes unrelated to the *guaB* 5'-RACE.

Supplementary Figure 4. Growth curves for *pbuX::Tn* grown in TSB and CDM. (a) Growth of WT and *pbuX::Tn* were monitored by optical density at 600nm over 20 hours in TSB. (b) Growth of WT and *pbuX::Tn* in CDM as in (a).

(C)

WT input

WT Day 3

∆guaB input

(d)

∆guaB Day 3

Supplementary Figure 5. Transmission electron microscopy of wild-type and $\Delta guaB$ input and after three days of guanine withdrawal. (a) TEM of WT input. (b) TEM of WT day 3. (c) TEM of $\Delta guaB$ input. (d) TEM of $\Delta guaB$ day 3. All fields are 6000x.

Supplementary Figure 6. Bactericidal guanine analog PC1 acts independent from the *xpt*riboswitch and the guanine nucleotide biosynthetic pathway in *S. aureus*. (a) Growth of *S. aureus*, *S. epidermidis*, *E. coli*, *E. faecalis*, *B. subtilis*, and *K. pneumonia* was measured by reading optical density at 600nm over time for 24 hours of culture in TSB containing 0, 0.08, 0.31, 0.63, and 1.25 mM PC1. (b) WT *S. aureus* was grown in TSB containing vehicle (0.002M NaOH, 1mM DTT), 1mM PC1, or 1mM PC1 combined with 1mM guanine and CFUs enumerated 24 hours later. (c) RNA from log phase WT *S. aureus* grown in TSB alone, or supplemented with 0.1, 0.3, and 0.5 mM PC1 was isolated and TaqMan qPCR was performed to quantify transcripts of *xpt*, *pbuX*, *guaB*, and *guaA* relative to the untreated controls. (d) Transcriptional reporter activity was measured in *B. subtilis* for *B.s. xpt*(-305)*lacZ* and *S.a. xpt*(-452)*lacZ* grown to log phase in Bacillus media with or without 1mM PC1 by Miller assay. (e) *S. aureus* carrying the *S.a. xpt*(-452)*lacZ* reporter was grown to log phase in TSB containing vehicle, 1mM of guanine, or 1mM PC1 and assayed for reporter activity. (f) WT and Δxpt -guaA were grown in Muller-Hinton broth containing 0, 0.5, and 1mM PC1 followed by enumeration of CFUs 24 hours later. All data are presented as mean +/- S.D. (n=3). Statistical analyses performed using Student's t-test; p < 0.05*, p < 0.01**, p<0.001***.

Supplementary Figure 7. Guanosine 5'-monophosphate (GMP), adenosine 5'-monophosphate (AMP), and guanine fail to prevent death of *S. aureus* in response to PC1. *S. aureus* NRS384 Δ hsdR Δ sauUSI was grown to log phase in cation-adjusted Mueller-Hinton Broth II (MHBII) and diluted to 1x10⁵ CFU/ml in fresh MHBII broth containing vehicle alone, 600µg/ml PC1, 600µg/ml PC1 + 100µM GMP, 600µg/ml PC1 + 100µM AMP, and 600µg/ml PC1 + 100µM guanine and CFU/ml was determined by serial dilution at 0, 2, 4, and 24 hours. MHBII was supplemented with 0.002%Triton X-100 and PC1 was solubilized using a vehicle (9.2mM NaOH + 450µM DTT) to prevent oxidative self-condensation (Muhlbacher et al., 2010 & Ster et al., 2013). Bacteria were incubated stationary at 37C in 1ml total volume in 96-well polypropylene blocks, and 20µl was removed for serial dilutions at each time-point. CFUs were enumerated by spotting 5µl of serial dilutions on MHBII / 5% sheep-blood agar plates in biological triplicate. The limit of detection in this experiment was 200 CFU/ml indicated by the dotted line.

Supplementary Figure 8. Balb/c peritoneal macrophage viability in response to PC1. (a) Thioglycollate-elicited Balb/c peritoneal macrophages were treated with varying concentrations of PC1 and cell viability measured using CellTitre Glow (Promega) at 8 hours. **(b)** Differential interference contrast images of peritoneal macrophages treated with varying concentrations of PC1. Data in **(a)** are presented as mean +/- S.E.M of biological triplicates.

Supplementary Figure 9. LCMS data of compound PC1 (CAS 35011-47-3). The purity was 100% by UV254nm at a retention time of 0.23min. The observed ion (M+H)⁺=142.25 that confirmed the identity of the compound (calculated mw=141.13). LCMS system: Waters Acquity UPLC and LCT (Time of Flight) mass spectrometer. Mobile phase A: water+0.05%TFA; Mobile phase B: acetonitrile; LC gradient: 0-98%B over 3min; LC column: Waters Acquity UPLC BEH C18, 1.7um, 2.1×50mm; MS method: positive ESI with 100-800amu/sec scan. CAD-Charged Aerosol Detector. MS-Mass Spectrometry. (Sigma Cat. No. 17376; 4-Hydroxy-2,5,6-triaminopyrimidine sulfate salt; CAS 35011-47-3).

Supplementary Figure 10. 5'-UTR of the S. aureus nrdl-nrdE-nrdF operon does not contain a guanine riboswitch. (a) Pairwise sequence alignment of the minimal aptamer domain of S. aureus *xpt*-riboswitch and the putative S. *aureus nrd*-riboswitch predicted computationally (<u>12</u>) to be located upstream of nrdl in S. aureus N315 highlighting (in red) conserved nucleobases that define the guanine-binding riboswitch (4). (b) Predicted secondary structure of the putative *nrd*-riboswitch aptamer of S. aureus deviates from the characteristic three-junction stem-loop structure of the purine riboswitch (56). (c) RNA from WT S. aureus grown overnight in CDM alone or with 1mM exogenous guanine was isolated and TaqMan qPCR performed to quantify the transcripts of *nrdI*, *nrdE*, and *nrdF* compared to untreated controls. (d) RNA from WT S. aureus grown to log phase in TSB containing 0, 0.25, 0.5, and 1 mM exogenous guanine was isolated and TagMan gPCR performed to guantify transcripts of *nrdI*. *nrdE*. and *nrdF* compared to untreated controls. (e) B. subtilis carrying a S. aureus nrd(-218)lacZ reporter was grown in Bacillus media to log phase in the presence of vehicle or 1mM exogenous guanine or adenine, with or without 50mM hydroxyurea and reporter activity was analyzed by Miller assay. (f) S. aureus carrying the S. aureus nrd(-218)/acZ reporter was grown in CDM as described in (e). All data are presented as mean +/- S.D. (n=3). Statistical analyses performed using Student's t-test; p < 0.05*, p < 0.01**, p<0.001***.

Supplementary Table 1. Primers and plasmids used in this study.

Plasmids & Primers used in this study	Purpose	Source
pIMAY	Allelic replacement in <i>S. aureus</i> NRS384 <i>∆hsdR∆sauUSI</i>	(Monk et al., 2012)
pIMC85	Stable integration into the into Φ 85 att site of <i>S. aureus</i> NRS384 Δ hsdR Δ sauUSI	This work
pCR2.1-TOPO	Linearized vector with single T overhangs for TA cloning 5'-RACE products	s Invitrogen
pDG1661	Stable integration of <i>lacZ</i> transcriptional fusions into <i>amyE</i> locus of <i>B. subtilis</i>	Bacillus Genetics Stock Center
	D	C
	Forward TaqMan qPCR for xpt	This work*
CAATGACCGTACTTGTTTTATTTTTAGTAAATGAATG	Reverse TaqMan qPCR for xpt	This work*
FAM-CCATCCGTCAAAGTGC-BHQ1	Probe TaqMan qPCR for <i>xpt</i>	This work*
GGCTTACTTGGGATGGTCGATATTA	Forward TaqMan qPCR for <i>pbuX</i>	This work*
CGGCACTGGGATGCCTAA	Reverse TaqMan qPCR for <i>pbuX</i>	This work*
FAM-CCAACCGGCATGATTG-BHQ1	Probe TaqMan qPCR for <i>pbuX</i>	This work*
AGCAAAAGATGAACATGGTCGTCTA	Forward TaqMan qPCR for <i>guaB</i>	This work*
GCTTCGACTAATTTTTGAGCACGAATA	Reverse TaqMan qPCR for guaB	This work*
FAM-TAGCCGCAGCAATTG-BHQ1	Probe TaqMan qPCR for guaB	This work*
TGAAGGCGACATGGTTATGGA	Forward TaqMan qPCR for <i>guaA</i>	This work*
GCGATCTTTCGCATTAACACGAATA	Reverse TaqMan qPCR for guaA	This work*
FAM-CCTTCACCGAATTGC-BHQ1	Probe TaqMan qPCR for guaA	This work*
GCCCCTTAGTGCTGCAGCTA	Forward TaqMan qPCR for <i>rrsA</i>	This work*
AGTTTCAACCTTGCGGTCGTA	Reverse TaqMan qPCR for rrsA	This work*
FAM-CGCATTAAGCACTCCGCCTGGG-BHQ1	Probe TaqMan qPCR for <i>rrsA</i>	This work*
Allelic Replacement Primers	Purpose	Source
ATATGGTACCTTTAAAAATTTGTTTATTTAATC	∆xpt-pbuX-guaB-guaA A / KpnI	This work
TCTTAAAACCTCCTCAGATTTGTGTGAAAC	∆xpt-pbuX-guaB-guaA B / KpnI	This work
GTTTCACACAAATCTGAGGAGGTTTTAAGATTATATAAAAAAAA	A Δxpt-pbuX-guaB-guaA C / Kpnl	This work
ATATGAATTCACACACTCGTTCAATAGGCAACCTAAAACA	⊿xpt-pbuX-guaB-guaA D / KpnI	This work
TACAGTAATATCTGCCATAGTTGTCGCCCC	∆xpt-pbuX-guaB-guaA OUT F / KpnI	This work
AAATAATTCCGATTACACAAAAGGGACGAT	∆xpt-pbuX-guaB-guaA OUT R / KpnI	This work
TACATGTCAAGAATAAACTGCCAAAGC	pIMAY MCS forward sequencing primer	(Monk et al., 2012)
AATACCTGTGACGGAAGATCACTTCG	pIMAY MCS reverse sequencing primer	(Monk et al., 2012)
GTTTCACACAAATCTGAGGAGGTTTTAAGATACGCAGGTGCTA TCTTAGTTCCAATCATT	∆xpt-pbuX C	This work
ATATGAATTCCCAAGTAAGCCAGCACCTATCGTTCCTAA	∆xpt-pbuX D / EcoRI	This work
TCTAAACGGCACTGGGATGCCTAACCAACC	<i>∆xpt-pbuX</i> OUT R	This work
GTAAATTTGCAAAAGAATCA <u>TAG</u> TTAACGTTTGATGATGTGTT	B1xSTOP F (stop codon engineered in complementation vector)	This work
AACACATCATCAAACGTTAA <u>CTA</u> TGATTCTTTTGCAAATTTAC	B1xSTOP R (stop codon engineered in complementation vector)	This work
CAAAAGAACAAGAGTTAATC <u>TAG</u> CTTGTCTTAGACTTTGGTAG	A1xSTOP F (stop codon engineered in complementation vector)	This work
CTACCAAAGTCTAAGACAAG <u>CTA</u> GATTAACTCTTGTTCTTTG	A1xSTOP R (stop codon engineered in complementation vector)	This work

Supplementary Table 1 (continued)

Transcriptional Reporter Primers	Purpose	Source
AAAAGAATTCAACCCTTACATTATTAAGTT	Forward <i>S. aureus xpt</i> -5'-UTR riboswitch reporter for <i>lacZ</i> fusion in pDG1661/EcoRI	This work
AAAAGGATCCTAGTAACTCCACTCTTAAAAC	Reverse <i>S. aureus xpt</i> -5'-UTR riboswitch reporter for <i>lacZ</i> fusion in pDG1661/BamHI	This work
AATAGAATTCAGACTCTTTTATATCGA	Forward <i>B. subtilis xpt</i> -5'-UTR riboswitch reporter for <i>lacZ</i> fusion in pDG1661/EcoRI	This work
TTTTGGATCCTTTCAGTGCTTCCATCCTGTC	Reverse <i>B. subtilis xpt</i> -5'-UTR riboswitch reporter for <i>lacZ</i> fusion in pDG1661/BamHI	This work
AAAAGAATTCTAGGACAAAAAGTAAAGGAAGACGGCGTTG	S. aureus reporter pbuX (-568)F /EcoRI	This work
AAAAGGATCCTAAATTTTTCATTATTCTTCTCCCACCAAT	S. aureus reporter pbuX (-568)R / BamHI	This work
AAAAGAATTCTCGCAAAATGTAGGACTTGTTTCTTTATCC	<i>S. aureus</i> reporter <i>guaB</i> (-454)F / EcoRI	This work
AAAAGGATCCTCTTTCGGTAAAATATCAGATTGTGCTGGA	<i>S. aureus</i> reporter <i>guaB</i> (-454)R / BamHI	This work
AAAAGAATTCATGGCTCGTCAAGGTGGTTTAGGTGTTATT	<i>S. aureus</i> reporter <i>guaA</i> (-1305)F / EcoRI	This work
AAAAGAATTCGGTGTGGATGTCTTAGTTATCGATACAGCA	<i>S. aureus</i> reporter <i>guaA</i> (-764)F / BamHI	This work
AAAAGAATTCGGTTATGTTAGGTAGCTTATTAGCAGGTAC	<i>S. aureus</i> reporter <i>guaA</i> (-414)F / EcoRI	This work
AAAAGGATCCTCCATATTTGTCGTTCTCCTTTATCTTAAT	S. aureus reporter guaA (-X)R / BamHI	This work
AAAAGAATTCAATTCAGTATCAAGCTAA	S. aureus reporter nrd (-218)F/ EcoRI	This work
AAAAGGATCCTATTATTTTCATTGGATC	S. aureus reporter nrd (-218)R / BamHI	This work

lacZ sequencing Primers	Purpose	Source
CGTCTGAATTTGACCTGAGC	lacZ sequence verification 1	This work
GAAAATGGTCTGCTGCTGCTGAAC	lacZ sequence verification 2	This work
CCGATATTATTTGCCCGATG	lacZ sequence verification 3	This work
ATGTCGCTCCACAAGGTAAACAG	lacZ sequence verification 4	This work
ATGCGGTGCTGATTACGACC	lacZ sequence verification 5	This work
Northern blot probes	Purpose	Source
TACTGAAGAAAGCCCAGGCG	PCR amplification of <i>guaB</i> for radioactive probe (F)	This work
AAACCAGCAGGACCCATACG	PCR amplification of <i>guaB</i> for radioactive probe (R)	This work
ACGCGATTTTACGCCAAGTG	PCR amplification of <i>guaA</i> for radioactive probe (F)	This work
TAGACTACGCGGTTGACGTG	PCR amplification of <i>guaA</i> for radioactive probe (R)	This work
TCAACCGTGGAGGGTCATTG	PCR amplification of <i>rrsA</i> for radioactive probe (F)	This work
TGCACCACCTGTCACTTTGT	PCR amplification of <i>rrsA</i> for radioactive probe (R)	This work

Supplementary Table 1 (continued)

Riboswitch aptamer and in-vitro transcription primers	Purpose	Source
AAAAGCGGCCGCTAATACGACTCACTATAGGGCGAAGCAGT TATTGAAAAAATGCCG	<i>S. aureus xpt</i> -ribswitch aptamer with T7 TSS & cloning into pIMC85/NotI	This work
TATAGGATCCCACTCTTAAAACCTCCTCAGATTTGTGTGAAAC	<i>S. aureus xpt</i> -riboswitch aptamer with T7 TSS & cloning into pIMC85/BamHI	This work
AAAAGCGGCCGCTAATACGACTCACTATAGGGCGAATATAA TAGGAACACTC	<i>B. subtilis xpt</i> -riboswitch aptamer with T7 TSS & cloning into pIMC85/NotI	This work
TATAGGATCCCATCCTGTCTACCTCCGTTATGAGAATAA	<i>B. subtilis xpt</i> -riboswitch aptamer with T7 TSS & cloning into pIMC85/BamHI	This work
TAATACGACTCACTATAGGGCGAATAATTTACATAAACTC	S. aureus 93 xpt aptamer (F)	This work
GTTGTTACTCATAGTCATGTC	S. aureus 93 xpt aptamer (R)	This work
TAATACGACTCACTATAGGGCGAATATAATAGGAACACTC	B. subtilis 93 xpt aptamer (F)	This work
GTTCCATTGCTCACCCATAG	B. subtilis 93 xpt aptamer (R)	This work

5'-RACE primers	Purpose	Source
CCAGTGAGCAGAGTGACGAGGACTCGAGCTCAAGCTTTTTT TTTTTTTTT	- QT	Invitrogen
CCAGTGAGCAGAGTGACG	Q0	Invitrogen
GAGGACTCGAGCTCAAGC	QI	Invitrogen
TTCTGCTTCATAAACGCTTT	Gene specific primer 1 (guaB)	This work
CTTCTGGCGTTAAGAAAAAT	Gene specific primer 2 (guaB)	This work
CGCTTGTTCTTCAACGCCCA	Gene specific primer 3 (guaB)	This work

*TaqMan Primer/Probe sets engineered by Life Technologies[™] Custom Design

(F) and (R) designate forward and reverse primers respectively

Supplementary Table 1 (continued)

pIMC85 construction primers	Name / Purpose	Source
ATAT <u>AGATCT</u> AT <u>GCATGC</u> CTTTGGCAGTTTATTCTTGACATGT AGTGAGGGGGCTGGTATAATCACATAAGGAGGATATATAT	IM202 Pcp25- <i>ermB</i> F to amplify <i>ermB</i> (BgIII/SphI)	This work
<u>CTGCAG</u> ATCCATGGATATCCTCCTTTATTTCCTCCCGTTAAAT AATAG	IM203 ermB R to amplify ermB (PstI/NcoI)	This work
<u>AGGAGG</u> ATAT <u>CCATGG</u> AT <u>CTGCAG</u> CGATTTTTTATTAAAACG TCTCAAAATCG	IM204 <i>repB</i> F to amplify <i>repB</i> (RBS/PstI/NcoI)	This work
ATAT <u>GAATTCAAGCTT</u> AATAGTCAAAAGCCTCCGGTCGGAGG CTTTTGACTTTATGCTTTCGATTCTGAAATCACCATTT	G repB R to amplify repB (EcoRI/HindIII)	This work
ATAT <u>CCATGG</u> AAGTAGCAATTTATACTAGAGTGAG	IM287 int 85 F to amplify int (Ncol)	This work
ATAT <u>CTGCAG</u> TTAATAAAACTCTATACCCGTAATC	IM288 int 85 R to amplify int (PstI)	This work
ATAT <u>AGATCT</u> TCGTTGAGTAAAGACATAGACTTAGC	312 attP 85 F to amplify <i>attP</i> (BgIII)	This work
ATAT <u>GCATGC</u> TAATTGGAAGTTCGGAATAACTATGC	313 attP 85 R to amplify <i>attP</i> (SphI)	This work
ATAT <u>GCATGC</u> TATGCTTTGGCAGTTTATTCTTGAC	291 Phelp-cat AF to amplify cat (SphI)	This work
CCA A GGAATAATAGAAAGAGAAAAAGC	308 cat BR to amplify <i>cat</i>	This work
TTTCTCTTTCTATTATTCCTTGGACTTCATTTACTGGGTTTAAC	309 cat	This work
ATAT <u>CCATGG</u> ATA <u>TCCTCC</u> TTTATAAAAGCCAGTCATTAGG	292 cat DR (Ncol/RBS)	This work
ACTGTGGTCGAATACAAATTATCACACC	289 85 Con F	This work
ATTAATGGCATTATTAGCTTTAAGTAG	290 85 Con R	This work

Underlined: Gram positive ribosome binding site. Underlined/Itallics: Restriction site. Bold: NcoI point mutation.

Supplementary Table 2. Schematic of strain-specific modifications of the *xpt-guaA* operon in *S. aureus*.

(b) Transcriptional reporter constructs (integrated in S. aureus)

