Supplemental Figure S1.

Supplemental Figure S1. GOX1 and GOX2 gene models, together with T-DNA insertion
sites in the knockout SAIL_177_G11 (gox1-1) and SALK_044052 (gox2-1) lines, as well as
the EMS-induced single nucleotide polymorphism in line 238.3. Black and white boxes
represent protein-coding and untranslated regions, respectively. Black arrows indicate primers
used for genotyping and blue arrows – primers used for qRT-PCR.

11 Supplemental Figure S2.

Supplemental Figure S2. Read coverage of *GOX1* and *GOX2* loci from RNA-seq analysis of *cat2-2 gox1-1, cat2-2* and *cat2-2 gox2-1* mutants. Aligning of reads obtained by RNA-seq from *cat2-2, cat2-2 gox1-1* and *cat2-2 gox2-2* mutants before (0h) and after exposure to photorespiratory stress (3h) to the reference sequences of *GOX1* and *GOX2*.

20 Supplemental Figure S3.

21

Genotype effect (0h)

22

23

- Supplemental Figure S3. Heat map of differentially expressed transcripts ($|\log 2 FC| > 1$,
- FDR < 0.05) between *cat2-2 gox1-1*, *cat2-2 gox2-1* and *cat2-2* mutants under control high
- 26 CO_2 conditions aimed at inhibiting the photorespiratory flux.

Supplemental Figure S4. Redox status of Col-0, *cat2-2*, *cat2-2* gox1-1 and *cat2-2* gox2-1 plants grown under ambient air and moderate light intensity (300 μ mol m⁻² s⁻¹). A) Levels of reduced and oxidized glutathione (GSH and GSSG, respectively) in rosettes of three-week-old plants. Bars represent means of three biological replicates \pm SE. (B) Representative brightfield images of 3,3'-diaminobenzidine-stained mature leaves of three-week-old plants. The scale bar is 0,5 cm.

Supplemental Figure S5. Non-photochemical quenching (NPQ; A) and phosphorylation of LHCBII (B) upon exposure of Col-0, gox1-1 and gox2-1 plants grown under conditions limiting photorespiration to high light.

48 Supplemental Figure S6.

49

50

51 Supplemental Figure S6. GOX1 and GOX2 genes in Brassicaceae are clustered as 52 monophyletic group in the gene tree of ORTHO03D000507 from PLAZA 3.0 Dicots. GOX1 53 and GOX2 in Brassicaceae are in green, and the two GOX genes from Solanaceae identified 54 based on synteny are shown in red. Numbers on branches denote bootstrap values.

- **Supplemental Figure S7.** Extractable leaf GOX activity. Bars represent averages from three
- 61 biological replicates \pm SE.

63 Supplemental Figure S8.

65

66

Supplemental Figure S8. *GOX1* and *GOX2* transcript abundance. RNA was extracted from rosettes of three-week-old plants grown *in vitro* and used to quantify gene expression levels by qRT-PCR. Values are means \pm SD of four biological replicates. Asterisks indicate significant difference (p<0.05) in comparison to Col-0 according to one-way ANOVA.

72 Supplemental Table S1. Maximum likelihood estimates of parameters under branch models

73	on both post	t-duplication	branches	leading to t	the GOX1	and GOX2 clades.
----	--------------	---------------	----------	--------------	----------	------------------

Model	р	e	κ	ω ₀	ω_{GOX1}	ω _{GOX2}
A: One ratio: $\omega_0 = \omega_{GOX1} = \omega_{GOX2}$	33	-5437.64	1.71	0.070	0.070	0.070
B: Two ratios: $\omega_0 = \omega_{GOX1}$, ω_{GOX2}	34	-5432.37	1.69	0.067	0.067	31.293
C: Two ratios: $\omega_0 = \omega_{GOX2}, \omega_{GOX1}$	34	-5436.67	1.71	0.069	0.233	0.069
D: Two ratios: ω_0 , $\omega_{GOX1} = \omega_{GOX2}$	34	-5433.50	1.71	0.067	0.291	0.291
E: Three ratios: ω_0 , ω_{GOX1} , ω_{GOX2}	35	-5432.21	1.70	0.066	0.105	3.941
F: Two ratios: $\omega_0 = \omega_{GOX1}$, $\omega_{GOX2} = 1$	33	-5432.55	1.70	0.067	0.067	1.000
G: Two ratios: $\omega_0 = \omega_{GOX2}$, $\omega_{GOX1} = 1$	33	-5437.34	1.72	0.068	1.000	0.068
H: Two ratios: ω_0 , $\omega_{GOX1} = \omega_{GOX2} = 1$	33	-5436.17	1.72	0.066	1.000	1.000
I: Three ratios: ω_0 , ω_{GOX1} , ω_{GOX2} = 1	34	-5432.30	1.70	0.067	0.116	1.000
J: Three ratios: ω_0 , ω_{GOX2} , ω_{GOX1} = 1	34	-5435.07	1.73	0.066	1.000	0.275

75

p, number of free parameters in the model; ℓ , log-likelihood; **κ**, the ratio of transition to transversion; ω_{GOX1} and ω_{GOX2} , the ratio of non-synonymous substituion rate (dN) to synonymous substituion rate (dS) on the two post-duplication branches to *GOX1* and *GOX2* clades, respectively; ω_0 , dN/dS for rest of the branches on the tree

Model comparisons	2 <u>/</u> 2	df	<i>p</i> value
A-D	8.295754	1	0.003973788
A-B	10.542752	1	0.001166446
C-E	8.923886	1	0.00281465
A-C	1.944748	1	0.16315393
B-E	0.325882	1	0.568094036
D-H	5.342664	1	0.020809648
B-F	0.348118	1	0.555180423
E-I	0.177828	1	0.673246506
C-G	1.331848	1	0.248476723
E-J	5.729078	1	0.016686241

- 81 Supplemental Table S2. Likelihood ratio tests for comparing different branch models
 82 applied to both post-duplication branches leading to the *GOX1* and *GOX2* clades.

 $2\Delta \ell$, likelyhood ratio statistics; df, degree of freedom

87 Supplemental Table S3. The modified branch-site models for detecting positive selection on
88 six branches after the duplication event leading to *GOX2* in *Arabidopsis*.

Branch	е _{но}	e _{ha}	2 ∆ €	df	<i>p</i> value
#1	-5401.887282	-5401.781842	0.21088	1	0.32303927
#2	-5401.767414	-5401.577101	0.38062	1	0.26863420
#3	-5402.937338	-5402.85316	0.16835	1	0.34078851
#4	-5403.195792	-5403.195793	2E-06	1	0.49943581
#5	-5403.170388	-5403.170388	0	1	0.5
#6	-5402.919624	-5402.047157	1.74493	1	0.09325743

 ℓ_{H0} , log likelihood for the branch-site model without positive selection; ℓ_{HA} , log likelihood for

92 the branch-site model with positive selection; $2\Delta \ell$, likelyhood ratio statistics; df, degree of

93 freedom

Supplemental Table S4. List of primers used in the study.

Primer name	Use	Sequence
gox1_SAIL_177_G11_newLP1	Genotyping	GGGAATCACAAGAAATTGATC
gox1_SAIL_177_G11_RP	Genotyping	GAAGGACTTGACCTCGGAAAG
gox2_SALK_044052_LP	Genotyping	ATACCATGATGGTTCCAGCAG
gox2_SALK_044052_RP	Genotyping	TTGTTATGTTTCGTCAAGCCC
gox3_GABI_523D09_LP	Genotyping	TTGGATGGGAATACTTTATTGG
gox3_GABI_523D09_RP	Genotyping	GCATCAACCTTTTGCTTGAAG
haox1_SAIL_84_A04_newLP2	Genotyping	AGAGGACAAGAGGAGCAAGATTC
haox1_SAIL_84_A04_RP	Genotyping	GCGCTTTGAAAACATCTGTTC
haox2_SALK_102409_LP	Genotyping	GGAAACTTGGTCTCCATCAGG
haox2_SALK_102409_RP	Genotyping	GCTCGACTATTCCCCTGCTAC
LBb1.3	Genotyping	ATTTTGCCGATTTCGGAAC
SAIL_LB3	Genotyping	TAGCATCTGAATTTCATAACCAATCTCGATACAC
GK_08474	Genotyping	ATAATAACGCTGCGGACATCTACATTTT
SALK_newLB1	Genotyping	TGGACCGCTTGCTGCAACTCTC
CAT2_LP	Genotyping	CCCAGAGGTACCTCTTCTTCTCCCATG
CAT2_RP	Genotyping	TCAGGGAACTTCATCCCATCGC
GOX1_F_CDS	qRT-PCR	TCTCATTGGCAGCTGAAGGA
GOX1_R_CDS	qRT-PCR	GAGTGTCCCATTCGGTGGTA
GOX2_F_CDS	qRT-PCR	TTTGCACTAGCTGCTGAAGGA
GOX2_R_CDS	qRT-PCR	ATAACCTGGGCAAATGGCGT
GOX1_F	qRT-PCR	AGAACAGCAGCAACACAGAAC
GOX1_R	qRT-PCR	CACTAGGCTTGGTTTGTGATCTGATA
GOX2_F	qRT-PCR	ATATCTCGAAAAACTTGTTTCTCCCTATAT
GOX2_R	qRT-PCR	ATCTATTGTACAAGCAATAAGAATAAACGG
EF1a_F	qRT-PCR	TCCGTCGGAGCTCAATTCTC
EF1a_R	qRT-PCR	AGGAAGCTCGAGTGCCAAGTAC
UBQ5_F	qRT-PCR	CTGCATTTCTATTTGGGAATTTTGTAA
UBQ5_R	qRT-PCR	ATCCAGAACGAAAGATGTTCAACATAG

Chromosome	Position	Reference base	Mutant	Coverage	Frequency	Region	AGI code	Position in gene	Position in codon	Reference amino acid	Mutant
3	4822263	G	А	65	0.9	CDS	At3g14420	263	2	G	Е
3	7636562	G	А	40	0.89	intergenic					
3	6290758	G	А	60	0.86	intergenic					
3	3807077	G	А	54	0.84	intergenic					
3	6145283	G	А	43	0.83	five_prime_UTR	At3g17940				
4	8981113	G	А	5	0.83	intronic/noncoding	At4g15780				
3	6021032	G	А	50	0.82	CDS	At3g17600	9	3	v	V
3	436295	С	Т	60	0.8	CDS	At3g02260	11022	3	Е	Е
3	3397230	G	А	37	0.8	intronic/noncoding	At3g10845				
3	6031593	G	А	51	0.8	CDS	At3g17630	2223	3	K	K

Supplemental Table S6. Data sources and sequence accessions.

Data source	Species	Accession				
		AT3G14415				
PLAZA 3.0	Arabidopsis thaliana	AT3G14420				
Dicots		TP3G12710				
	menungiena parvaia	TP3G12720				
	Arabidopsis lyrata	fgenesh2_kg.31563AT3G14420.2				
		Bra021556				
		Bra021555				
		Bra001550				
EnsemblPlants	Brassica rapa	Bra001551				
Telease 30		Bra027338				
		Bra027339				
	Solanum lycopersicum	Solyc07g056540.2				
	Solanum tuberosum	PGSC0003DMG400027654				
	Canadila autolla	Carubv10014001m.g				
Phytozome 9	Capsena rubena	Carubv10013998m.g				
		Thhalv10020979m.g				
	Thellungiella halophila	Thhalv10020982m.g				