1 Supplementary information

2

Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases

5

Gang Liu,¹ Marion A. Cooley,² Andrew G. Jarnicki,¹ Alan C-Y. Hsu,¹ Prema M.
Nair,¹ Tatt Jhong Haw,¹ Michael Fricker,¹ Shaan L. Gellatly,¹ Richard Y. Kim,¹
Mark D. Inman,³ Gavin Tjin,⁴ Peter A B. Wark,^{1,5} Marjorie M. Walker,¹ Jay C.
Horvat,¹ Brian G. Oliver,^{4,6} W. Scott Argraves,² Darryl A. Knight,^{1,7} Janette K.
Burgess,^{4,8,9} and Philip M. Hansbro¹

11

¹2 ¹Priority Research for Asthma and Respiratory Diseases, Hunter Medical

- 13 Research Institute and The University of Newcastle, Newcastle, New South
- 14 Wales 2305, Australia
- ¹⁵ ²Department of Regenerative Medicine and Cell Biology, Medical University of
- 16 South Carolina, Charleston, South Carolina 29425, USA

¹⁷ ³Division of Respirology, Department of Medicine, McMaster University,

- 18 Hamilton, Ontario L8S 4K1, Canada
- ⁴Woolcock Institute of Medical Research, Discipline of Pharmacology, The
- 20 University of Sydney, Sydney, New South Wales 2006, Australia
- ⁵Department of Respiratory and Sleep Medicine, John Hunter Hospital,
- 22 Newcastle, New South Wales 2305, Australia
- ⁶School of Life Sciences, The University of Technology, Sydney, New South
- 24 Wales 2007, Australia

25	⁷ Department of Anesthesiology, Pharmacology and Therapeutics, University
26	of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
27	⁸ Discipline of Pharmacology, Sydney Medical School, The University of
28	Sydney, New South Wales 2042, Australia
29	⁹ Department Pathology and Medical Biology, University of Groningen,
30	University Medical Center, Groningen 9713GZ, The Netherlands
31	
32	Address correspondence to: Philip M. Hansbro, Hunter Medical Research
33	Institute and The University of Newcastle, 1 Kookaburra Circuit, New Lambton
34	Heights, New South Wales, 2305, Australia. Phone: 61.2.4042.0187; Fax
35	61.2.4042.0024; E-mail Philip.Hansbro@newcastle.edu.au.
36	
37	Authorship note: G. Liu, M.A. Cooley and A.G. Jarnicki contributed equally
38	to this work.

Supplementary Figure 1. Col1a1, Fbln1c and Fbln1d mRNA levels in cigarette smoke
 (CS)-induced experimental COPD. WT mice were exposed to CS for eight-weeks to induce
 experimental COPD, controls were exposed to normal air. Relative abundance of Col1a1 (A),
 Fbln1c (B), and Fbln1d (C) mRNA levels in whole lungs after four-, six-, and eight-weeks of
 CS-exposure, determined by qPCR, n=5-6. Results are mean ± SEM. Statistical differences
 were determined with one-way ANOVA followed by Bonferroni post-test.

48 49 50 51 Supplementary Figure 2. Absence of FbIn1c protects against Col1a1 deposition around small airways and emphysema in experimental COPD. WT and *Fbln1c* deficient (^{-/-}) mice 52 53 54 55 were exposed to cigarette smoke for eight-weeks to induce experimental COPD, controls were exposed to normal air. (A) Col1a1 around mouse small airways (scale bar, 50 µm) assessed by immunohistochemistry. (B) Lung sections stained with hematoxylin and eosin (scale bar, 200 µm). n=5-6 mice per group.

56 57 58

Supplementary Figure 3. FbIn1c siRNA reduces target mRNA expression in lungs and 59 protects against emphysema in experimental COPD. WT mice were exposed to cigarette 60 smoke (CS) for four-days or eight-weeks to induce experimental COPD and were treated with 61 Fbln1c or scrambled siRNA. (A) Fbln1c and Fbln1d mRNA levels after siRNA treatment every 62 two-days during four-days of CS-exposure, n=5-6. (B) Fbln1c and Fbln1d mRNA levels after 63 siRNA treatment from weeks 6-8 of eight-weeks of CS-exposure, n=5-6. (C) Lung sections 64 65 stained with hematoxylin and eosin (scale bar, 200 µm). Results are mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 compared to normal air-exposed WT controls. \$\$P<0.01 compared to 66 CS-exposed controls treated with scrambled siRNA. Statistical differences were determined 67 with one-way ANOVA followed by Bonferroni post-test.

69 70 71 72 73 74 75 76 Supplementary Figure 4. FbIn1c siRNA alters FbIn1c binding proteins in whole lungs in experimental COPD. WT mice were exposed to cigarette smoke (CS) for eight-weeks to induce experimental COPD and were treated with FbIn1c or scrambled siRNA from weeks 6-8 of eight-weeks CS exposure. Fibronectin (Fn), tenascin-c (Tnc) and periostin (Postn) protein levels in whole lungs assessed by immunoblot (top), and fold change of protein densitometry normalized to β -actin (bottom, n=5-6). Results are mean ± SEM. *P<0.05, 77 **P<0.01 compared to normal air-exposed WT controls. \$\$P<0.01 compared to CS-exposed 78 controls treated with scrambled siRNA. Statistical differences were determined with one-way 79 ANOVA followed by Bonferroni post-test.

Supplementary Figure 5. Fbln1c binding proteins are altered in whole lungs and around small airways in WT and Fbln1c^{-/-} mice with experimental COPD. WT and Fbln1c^{-/-} mice were exposed to cigarette smoke for eight-weeks to induce experimental COPD, controls were exposed to normal air. (A) Fibronectin (Fn), (B) tenascin-c (Tnc) and (C) periostin (Postn) around mouse small airways by immunohistochemistry (scale bar, 50 µm). n=5-6 mice per group.

89 90 91 92 93 94 95 96 97 98 99 Supplementary Figure 6. Irrespective of the presence or absence of *FbIn1c* other ECM proteins are not altered in experimental COPD. WT and Fbln1c deficient (---) mice were exposed to cigarette smoke for eight-weeks to induce experimental COPD, controls were exposed to normal air. Versican (Vcan), hyaluronan and proteoglycan link protein (HapIn1), and extracellular matrix protein 1 (ECM1) proteins level in whole lungs by immunoblot (top), and fold change of protein densitometry normalized to β-actin (bottom), n=5-6. Results are mean ± SEM. Statistical differences were determined with one-way ANOVA followed by Bonferroni post-test.

Supplementary Figure 7. Tenascin-c (Tnc), type I collagen-α1 (Col1a1), and periostin (Postn) co-localize around mouse small airways in experimental COPD. Wild type (WT) and *Fbln1c* deficient ($^{-/-}$) mice were exposed to cigarette smoke for eight-weeks to induce experimental COPD, controls were exposed to normal air. Co-localization of Tnc (blue), Col1a1 (green) and Postn (red) around mouse small airways (scale bar, 50 µm, area magnified in Figure 4E is boxed). n=3.

109
110
111
111
112
112 Iocalize around mouse mall airways in experimental COPD. WT and *Fbln1c* deficient (^{-/-})
113 mice were exposed to cigarette smoke for eight-weeks to induce experimental COPD, 114 controls were exposed to normal air. Co-localization of Tnc (blue), Fbln1 (green) and Postn (red) around mouse small airways (scale bar, 50 μm, area magnified in Figure 4F is boxed).
116 n=3.

Supplementary Figure 9. Fibronectin (Fn), fibulin-1 (Fbln1), and periostin (Postn) colocalized around mouse small airways in experimental COPD. WT and *Fbln1c* deficient () mice were exposed to cigarette smoke for eight-weeks to induce experimental COPD, controls were exposed to normal air. Co-localization of Fn (blue), Postn (red) and Fbln1 (green) around mouse small airways (scale bar, 50 μm, area magnified in Figure 4E is boxed). n=3.

129 Supplementary Figure 10. Cytokine and chemokine changes in the airways in BALF in 130 **experimental COPD.** WT and *Fbln1c* deficient (-) mice were exposed to cigarette smoke 131 (CS) for eight-weeks to induce experimental COPD, controls were exposed to normal air. (A) 132 TNF- α , (B) IL-33, and (C) CXCL1 proteins in bronchoalveaolar lavage fluid (BALF) were 133 measured by ELISA. WT mice were exposed to CS for eight-weeks to induce experimental 134 COPD and were treated with FbIn1c or scrambled siRNA from weeks 6-8 of eight-weeks of 135 CS exposure. (D) TNF- α , (E) IL-33 and (F) CXCL1 protein in BALF were measured by ELISA. 136 n=5-6. Results are mean ± SEM. *P<0.05 compared to air-exposed WT controls. Statistical 137 differences were determined with one-way ANOVA followed by Bonferroni post-test. 138

139 140

Supplementary Figure 11. Absence of Fbln1c prevents reductions in Smad3 and Smad4 mRNA in the lungs in experimental COPD. WT and *Fbln* deficient (^{-/-}) mice were exposed to cigarette smoke (CS) for eight-weeks to induce experimental COPD, controls were exposed 141 142 143 to normal air. (A) Smad2, (B) Smad3, and (C) Smad4 mRNA levels in whole lungs 144 determined by qPCR, n=5-6. Results are mean ± SEM. *P<0.05, **P<0.01 compared to WT 145 controls. Statistical differences were determined with one-way ANOVA followed by Bonferroni 146 post-test.

Supplementary Figure 12. MMP mRNA levels in the lungs in experimental COPD. WT and *Fbln* deficient (^{-/-}) mice were exposed to cigarette smoke (CS) for eight-weeks to induce experimental COPD, controls were exposed to normal air. (A) *MMP1*, (B) *MMP3*, (C) *MMP7*, (D) *MMP8*, (E) *MMP12*, and (F) *MMP13* mRNA levels in whole lungs determined by qPCR, n=5-6. Results are mean ± SEM. *P<0.05, **P<0.01, ***P<0.001, ***P<0.0001 compared to normal air-exposed WT or *Fbln1c^{-/-}*controls. Statistical differences were determined with one-way ANOVA followed by Bonferroni post-test.

157 **Supplementary Table 1. Extracellular matrix (ECM) protein gene expression in whole** 158 **lungs in experimental COPD.** WT mice were exposed to cigarette smoke for eight-weeks to 159 induce experimental COPD, controls were exposed to normal air. ECM protein gene 160 expression in the lungs was assessed by PCR array. Red = up-regulated >2-fold, blue = 161 down-regulated >2-fold.

	Gene	4wk (Smk vs Cntrl)	8wk (Smk vs Cntrl)
Symbol	Description	Fold change	Fold change
Adamts1	A disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 1	-1.3824	-1.894
Adamts2	A disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 2	-2.4338	-2.2306
Adamts5	A disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 5	-1.2494	-1.9284
Adamtse	A disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 8	-1.4552	-1.2856
Cdb1	Cadharin 1	-1.0397	-1.4503
Cdh2	Cadherin 2	-1.182	-1.2332
Cdh3	Cadherin 3	-6.4183	-1.7248
Cdh4	Cadherin 4	1.3926	-1.01
Cntn1	Contactin 1	-1.0426	-1.3008
Col1a1	Collagen, type I, alpha 1	-2.5039	-1.3513
Col2a1	Collagen, type II, alpha 1	-3.6558	-1.2171
Col3a1	Collagen, type III, alpha 1	-1.6739	-1.9391
Col4a1	Collagen, type IV, alpha 1	-1.618	-2.1146
Col4a2		-1.7401	-1.6238
Col5a1	Collagen, type IV, alpha 3	-1.034	-1.2972
Col6a1	Collagen, type VI, alpha 1	-1.7114	-1.5642
Ctqf	Connective tissue growth factor	1.2199	-1.05
Ctnna1	Catenin (cadherin associated protein), alpha 1	-1.096	-1.4403
Ctnna2	Catenin (cadherin associated protein), alpha 2	-2.5144	-1.3504
Ctnnb1	Catenin (cadherin associated protein), beta 1	-1.0586	-1.2366
Ecm1	Extracellular matrix protein 1	-1.2279	1.0641
Emilin1	Elastin microfibril interfacer 1	-1.0601	-1.1411
Entpd1	Ectonucleoside triphosphate diphosphohydrolase 1	-1.3033	-1.6261
FDIN'I	Fibuin 1	-1.173	-1.3485
Hapln1	Hvaluronan and proteoplycan link protein 1	1.5239	-2 8194
Нс	Hemolytic complement	-1.7804	-2.0454
Icam1	Intercellular adhesion molecule 1	1.5229	1.3137
ltga2	Integrin alpha 2	-1.4144	-1.7476
Itga3	Integrin alpha 3	-2.1919	-1.6904
Itga4	Integrin alpha 4	-2.0437	-1.357
ltga5	Integrin alpha 5 (fibronectin receptor alpha)	1.1915	-1.1522
Itgae	Integrin alpha E, epithelial-associated	-2.221	-1.1797
Itgal	Integrin alpha L	-2.5144	-1.3589
Itgan	Integrin alpha M	-1.0304	2.1023
Itgav	Integrin alpha V	1 0724	2 3369
Itab1	Integrin beta 1 (fibronectin receptor beta)	-1.1617	-1.4463
ltgb2	Integrin beta 2	1.5624	2.3418
ltgb3	Integrin beta 3	-1.6315	-1.7332
ltgb4	Integrin beta 4	-1.4076	-1.533
Lama1	Laminin, alpha 1	1.5624	1.7131
Lama2	Laminin, alpha 2	-1.3863	1.0752
Lama3	Laminin, alpha 3	-1.0513	-1.5151
Lamb2	Laminin, beta 2	-1.0741	-1.3206
Lamc1		1 0881	-1 6081
Mmp10	Matrix metallopeptidase 10	-8.096	5.0616
Mmp11	Matrix metallopeptidase 11	-2.4321	-1.2679
Mmp12	Matrix metallopeptidase 12	6.3107	12.3514
Mmp13	Matrix metallopeptidase 13	-1.1465	3.4982
Mmp14	Matrix metallopeptidase 14 (membrane-inserted)	-2.7706	-1.4166
Mmp15	Matrix metallopeptidase 15	-1.1836	1.2231
Mmp1a	Matrix metallopeptidase 1a (interstitial collagenase)	-1.1552	1.0985
Mmp2	Matrix metallopeptidase 2	-1.8279	-1.0558
Mmp7	Matrix metallonentidase 7	-4.2237	1 5611
Mmp7	Matrix metallopeptidase 7	2 4654	2 6273
Mmp9	Matrix metallopeptidase 9	-1.5683	-1.0863
Ncam1	Neural cell adhesion molecule 1	-1.8963	-2.1015
Ncam2	Neural cell adhesion molecule 2	-5.3044	-1.5491
Pecam1	Platelet/endothelial cell adhesion molecule 1	-1.3824	-1.7501
Postn	Periostin, osteoblast specific factor	1.028	-1.7893
Sele	Selectin, endothelial cell	-2.7419	-1.4353
Sell	Selectin, lymphocyte	-1.565	-1.2145
Selp	Selectin, platelet	1.753	-1.1618
Spare	Secreted acidic cysteine rich alveonrotein	1 111	-1.5720
Spock1	Sparc/osteonectin_cwcy and kazal-like domains proteoplycan 1	-6 4183	-1 4009
Spool 1	Sparototiconotan, onor and hazar-inc domains protogryban i	2 5045	6 9005

Syt1	Synaptotagmin I	-1.536	1.6662
Tgfbi	Transforming growth factor, beta induced	1.1589	1.5687
Thbs1	Thrombospondin 1	-1.7742	-1.9084
Thbs2	Thrombospondin 2	-1.762	-1.6834
Thbs3	Thrombospondin 3	-1.5159	-1.4176
Timp1	Tissue inhibitor of metalloproteinase 1	-1.1869	2.012
Timp2	Tissue inhibitor of metalloproteinase 2	1.0843	-1.4829
Timp3	Tissue inhibitor of metalloproteinase 3	-1.518	-1.7881
Tnc	Tenascin C	-1.8496	1.0214
Vcam1	Vascular cell adhesion molecule 1	-1.2747	-1.2349
Vcan	Versican	-1.9335	-1.6148
Vtn	Vitronectin	-1.6832	-2.1308

	Healthy	COPD	smoker	p-value
Number	8	9	5	NA
Sex (% female)	50%	55%	80%	P=0.6
Mean Age (SD)	60 (8)	65 (15)	55 (11)	P=0.71
Mean FEV₁ (SD)	104.3 (13.62)	46 (10.55)	92.3 (9.5)	P < 0.001
Cigarette (Pack/year; SD)	0	53 (34.8)	32 (9.4)	P=0.05
Years abstinent (SD)	0	9.6 (1.2)	0	NA
ICS (present treated)	0	100%	0	NA

164 Supplementary Table 2. Human subject characteristics.

165

166 167 168 FEV_1 refers to the forced expiratory volume in 1s expressed as a percentage of the predicated value.

The statistical analysis used for this table is ANOVA for multiple groups.

NA = Not applicable. 169

Gene	Forward primer 5' to 3'	Reverse primer 5' to 3'
Col1a1	CTTCACCTACAGCACCCTTGTG	TGACTGTCTTGCCCCAAGTTC
Fbln1c	AGAACTATCGCCGCTCCGCA	CCACCGCTGGCACTTGGATG
Fbln1d	GCTATGAGGACGGCATGACT	GGAAACTACGCCTCCCAACA
Smad2	AATACGGTAGATCAGTGGGACA	CAGTTTTCGATTGCCTTGAGC
Smad3	GTTCTCCAAACCTCTCCCCG	TGTGAGGCGTGGAATGTCTC
Smad4	AGCCGTCCTTACCCACTGAA	GGTGGTAGTGCTGTTATGATGGT
MMP1	GTCTTCTGGCACACGCTTTT	GGGCAGCAACAATAAACAA
ММР3	ACATGGAGACTTTGTCCCTTTTG	TTGGCTGAGTGGTAGAGTCCC
MMP7	TTTGCTGCCACCCATGAAT	ACATCACAGTACCGGGAACAGA
MMP8	GATTCAGAAGAAACGTGGACTCAA	CATCAAGGCACCAGGATCAGT
MMP12	GCTTGAGTTTTGATGGTGTCAC	GAAGTAATGTTGGTGGCTGGGA
MMP13	CCTTCTGGTCTTCTGGCACAC	GGCTGGGTCACACTTCTCTGG
		CAACTTECCCTCATCTTACCCTT

170 Supplementary Table 3. Primers used for qPCR analysis.