Supplementary Information

Bremges, A.¹, Singer, E., Woyke, T. and Sczyrba, A. (2016). MeCorS: ¹ abremges@cebitec.uni-bielefeld.de Metagenome-enabled error correction of single cell sequencing reads.

Availability

MeCorS git repository	https://github.com/metagenomics/MeCorS
Benchmarking data sets	http://genome.jgi.doe.gov/MeCorS

7

List of Figures

- S1 SAG sequencing coverage profiles 2
- S2 Effect of different coverage thresholds 6
- S₃ Effeciency of threading 9

List of Tables

- S1 Profile of the *in vitro* mock metagenome 3
- S2 Performance of SAG error correction 4
- S₃ IDBA-UD assembly results
- S4 SPAdes assembly results 8

E. coli single amplified genomes

Figure S1: **SAG sequencing coverage profiles.** Density estimations of the per-base coverages, dotted lines represent the SAG's mean coverage.

For benchmarking, we used eight *Escherichia coli* K12-MG1655 single amplified genomes (SAGs) from Clingenpeel *et al.*, 2014²:

"Single-cell genomes were obtained as described in Clingenpeel *et al.* (2014)³. Reads were subsampled to 315x per genome. Reads were filtered for human contamination by alignment using bwa (Li and Durbin, 2010)⁴ and for Illumina artifacts using an in-house tool duk (unpublished)."

While the mean per-base coverage is similar across SAGs, coverage bias introduced by multiple displacement amplification (MDA) results in quite variable profiles (Figure S1). Two SAGs, 6 and 7, show hardly any bias and resemble isolate-grade genomes with a Poisson-like coverage distribution. All other SAGs suffer from considerabe MDA bias.

The interquartile range (IQR) of the per-base coverage indicates the variation of coverage across the SAG. Based on the IQR, we propose a "quality" ranking of the eight *E. coli* SAGs:

$$6\approx 7>1\approx 8>0>2>3>4$$

Poorly amplified SAGs benefit the most from error correction with MeCorS (Table S2). The quality of a SAG assembly seems to be negatively correlated with its coverage variation (Tables S3 and S4). ² Clingenpeel, S. *et al.* (2014b). Reconstructing each cell's genome within complex microbial communities– dream or reality? *Front Microbiol*, **5**, 771

771
³ Clingenpeel, S. *et al.* (2014a). Effects of sample treatments on genome recovery via single-cell genomics. *ISME J*, 8(12), 2546–2549
⁴ Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*, 26(5), 589–595

In vitro mock metagenome

Taxonomy ID	Phylum	Species	mapped reads	avg. coverage	est. abundance
771875	Thermotogae	Fervidobacterium pennivorans	39566833	2708.24	19.39%
646529	Firmicutes	Desulfosporosinus acidophilus	53202915	1579.64	11.31%
526227	Deinococcus-Thermus	Meiothermus silvanus	32231620	1276.02	9.14%
573413	Spirochaetes	Spirochaeta smaragdinae	39431130	1255.97	8.99%
582402	Proteobacteria	Hirschia baltica	28144226	1181.16	8.46%
717605	Firmicutes	Thermobacillus composti	30954326	1046.39	7.49%
767817	Firmicutes	Desulfotomaculum gibsoniae	24329020	741.83	5.31%
767434	Proteobacteria	Frateuria aurantia	13922996	568.16	4.07%
633147	Actinobacteria	Olsenella uli	7839526	552.99	3.96%
768704	Firmicutes	Desulfosporosinus meridiei	16066750	487.57	3.49%
583355	Verrucomicrobia	Coraliomargarita akajimensis	11810956	467.03	3.34%
694430	Euryarchaeota	Natronococcus occultus	12505736	403.70	2.89%
797304	Euryarchaeota	Natronobacterium gregoryi	8676937	335.23	2.40%
797302	Euryarchaeota	Halovivax ruber	6060380	274.95	1.97%
926566	Acidobacteria	Terriglobus roseus	8464573	239.33	1.71%
640132	Actinobacteria	Segniliparus rotundus	4886507	225.63	1.62%
644801	Proteobacteria	Pseudomonas stutzeri	5448168	174.50	1.25%
160490	Firmicutes	Streptococcus pyogenes	1502208	120.44	0.86%
195103	Firmicutes	Clostridium perfringens	1461840	66.55	0.48%
203119	Firmicutes	Clostridium thermocellum	1542460	59.62	0.43%
882884	Proteobacteria	Salmonella enterica	1831145	58.72	0.42%
926556	Bacteroidetes	Echinicola vietnamensis	2160987	57.22	0.41%
196627	Actinobacteria	Corynebacterium glutamicum	1063668	47.67	0.34%
511145	Proteobacteria	Escherichia coli	647555	20.65	0.15%
218493	Proteobacteria	Salmonella bongori	501312	16.61	0.12%
446468	Actinobacteria	Nocardiopsis dassonvillei	6640	0.06	< 0.01%

For benchmarking, we used the *in vitro* mock metagenome, including *E. coli* K12-MG1655, from Bowers *et al.*, 2015⁵:

"The mock community is composed of 23 bacterial species and 3 archaeal species. DNA from pure cultures of each of the 26 microbial taxa was extracted with standard genomic purification kits. DNA extracts were quantified in quadruplicate with the Qubit 2.0 fluorometer and pooled at varying ratios to produce a mock community [...] The unamplified control library was prepared from a 200 ng aliquot of the pooled mock community DNA using Illumina's TruSeq library preparation protocol. [...] All libraries were sequenced on the Illumina HiSeq 2000 platform using 2 x 150 bp paired end sequencing."

Shotgun metagenome sequencing generated a total of 355,875,608 reads (53 Gbp). We mapped these with BWA-MEM⁶, version 0.7.12, simultaneously against all 26 reference genomes, postprocessed the alignments with samtools⁷, version 1.2, and calculated the per-base coverage values (Table S1).

The relatively low abundance of *E. coli* in the mock community (0.15%) results in a mean coverage of 20.7x, indicating that MeCorS can correct chimeric reads and sequencing errors even when facing only minimal metagenomic coverage (Table S2).

Table S1: **Profile of the** *in vitro* **mock metagenome.** 26 microbial species.

⁵ Bowers, R. M. *et al.* (2015). Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. *BMC Genomics*, **16**(1), 856

⁶ Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv:*1303.3997
⁷ Li, H. *et al.* (2009). The Sequence Alignment/Map format and SAM-tools. *Bioinformatics*, 25(16), 2078–2079

SAG error correction

		SAG							
Metric	Program	0	1	2	3	4	6	7	8
Reads	_	9365134	9604918	8811278	8396488	9257066	8609900	8990744	9682468
Perfect	raw BayesHammer MeCorS	2120932 7656274 8886436	2179609 8260510 9188854	1937541 6302861 8440502	1954244 5970186 7965810	1872800 6297298 8829995	2049675 7639715 8264229	2063874 8068555 8611867	2183454 8317006 9272559
Chimeric	raw BayesHammer MeCorS	69568 72820 5502	67625 70590 4593	81938 87564 10397	75509 80336 4648	79443 84813 5257	52246 53875 3941	44983 46387 3824	59265 61948 4889
Better	raw BayesHammer MeCorS						 6244274 6403639		
Worse	raw BayesHammer MeCorS	31644 25990	26951 25304	32315 20560	 29096 27335	41584 27390	25270 20791	 26959 21074	 28960 24001
Time (h)	BayesHammer MeCorS	1:43 1:13	1:45 1:09	1:51 0:58	2:04 0 :53	2:24 1:06	1:35 1:00	1:38 1:08	1:46 1:13
RAM (GB)	BayesHammer MeCorS	14.90 10.77	15.64 10.75	13.70 10.76	12.34 9.65	15.33 10.76	14.59 10.79	15.72 10.75	15.77 10.75

We corrected the raw reads with BayesHammer⁸, bundled with SPAdes⁹, version 3.6.0. We disabled quality trimming in SPAdes's configs/hammer/config.info.template by zeroing input_trim_quality to perform only error correction.

We ran BayesHammer using SPAdes's wrapper script:

```
for f in Eco*.fastq.1.gz; do
            spades.py --sc --only-error-correction -1 $f -2 ${f/.1./.2.} \
            -0 hammer_${f%.fastq.1.gz}
done
```

We also corrected the raw sequencing reads with MeCors:

```
MG=/path/to/metagenome.fastq
for f in Eco*.fastq.?.gz; do
            mecors -s $f -m $MG | gzip -1 > ${f/.fastq./.mecors.fastq.}
done
```

We evaluated the performance of read error correction as described in Li, 2015¹⁰, using the same read-based metrics:

"A read is said to become *better* (or *worse*) if the best alignment of the corrected sequence has more (or fewer) identical bases to the reference genome than the best alignment of the original sequence. The table gives [...] the number of reads mapped *perfectly*, number of *chimeric* reads (i.e. reads with parts mapped to different places), number of corrected reads becoming *better* and the number of corrected reads becoming *worse* than the original reads."

Table S2: **Performance of SAG error correction.** Time/RAM for 16 threads.

⁸ Nikolenko, S. I. *et al.* (2013). BayesHammer: Bayesian clustering for error correction in single-cell sequencing. *BMC Genomics*, **14 Suppl 1**, S7

⁹ Bankevich, A. *et al.* (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.*, **19**(5), 455–477

¹⁰ Li, H. (2015). BFC: correcting Illumina sequencing errors. *Bioinformatics*, **31**(17), 2885–2887 We note that MeCorS only implicitely corrects chimeric SAG reads, yet reduces the amount of chimeras by one order of magnitude. MDA introduces chimeric junctions roughly once per 10 kbp in SAGs¹¹, but metagenome sequencing is largely unbiased and free of chimeras.

Chimeric reads contain DNA sequences originating from two different genome regions, say *A* and *B*, with the first part originating from region *A*, the second part from region *B*. A chimeric junction will (in most cases) result in an untrusted 32nd base (from region *B*) when looking at its 31-mer prefix (from region *A*; phase 3 of MeCorS). MeCorS then tries to correct this position of the SAG read by replacing the untrusted 32nd base (*B*) with the most frequent and trusted 32nd base from the metagenome (*A*). MeCorS therefore performs an implicit and thorough write-through correction of chimeric SAG reads, completely rewriting their second parts. ¹¹ Lasken, R. S. and Stockwell, T. B. (2007). Mechanism of chimera formation during the Multiple Displacement Amplification reaction. *BMC Biotechnol.*, **7**, 19

Fine-tuning MeCorS

We recommend running MeCorS with default settings. They work sufficiently well for most SAG/metagenome combinations.

Metagenome coverage threshold

Figure S2: **Effect of different coverage thresholds**. MeCorS considers a *k*-mer trusted if it occurs at least twice in the metagenome.

By default, we consider a *k*-mer trusted if it occurs at least twice in the accompanying metagenome. The user can adjust this threshold this with the parameter - c, potentially improving MeCorS's performance for specific data sets.

Figure S2 shows the effect of a parameter sweep for the *E. coli* SAGs and the *in vitro* mock metagenome. Increasing the *k*-mer coverage threshold from 1 to 2 is the most beneficial, further increasing this threshold only marginally improves results. Above some coverage threshold error correction performance begins to decline, which we believe to be dependent on the taget genome's metagenomic coverage. For the *E. coli* SAGs and the concomitant mock metagenome, this turning point seems to be around 4.

k-mer size for error correction

The *k*-mer size does not depend on e.g. the read length, but on the *k*-mer's uniqueness in the (meta)genome. Kelley *et al.*, 2010^{12} , suggest a minimum *k*-mer size of 15 for bacterial genomes.

Following Li, 2015, MeCorS uses a larger *k*-mer size of 31 by default (and currently does not support larger *k*-mers).

¹² Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010). Quake: qualityaware detection and correction of sequencing errors. *Genome Biol.*, **11**(11), R116

IDBA-UD assemblies

		SAG							
Metric	Program	0	1	2	3	4	6	7	8
NG50	raw	45284	53863	31250	24834	17196	87102	80574	59754
	BayesHammer	40924	51004	29256	24023	17246	95532	87102	44292
	MeCorS	59081	73496	54946	41749	31569	90184	80997	80997
# contigs	raw	330	342	514	607	654	201	200	303
	BayesHammer	335	345	530	626	653	191	194	328
	MeCorS	277	272	409	497	512	200	198	249
Largest contig	raw	227106	203026	203098	141383	102074	221687	232585	162612
	BayesHammer	203098	157125	197417	141494	107872	221687	178322	139398
	MeCorS	236473	203098	144213	141579	124628	221683	221683	236473
Total length	raw	4400079	4587934	4400469	4139052	3940625	4640153	4639167	4533515
	BayesHammer	4402128	4591089	4400334	4144742	3934141	4641409	4638005	4538546
	MeCorS	4408926	4590112	4421966	4171137	3972787	4639453	4636457	4538141
# misassemblies	raw	16	11	15	32	36	0	0	10
	BayesHammer	17	11	9	37	37	0	0	8
	MeCorS	9	4	2	13	20	0	0	7
# mismatches per 100 kbp	raw	4.17	3.64	10.16	17.02	20.41	0.31	0.13	3.16
	BayesHammer	4.88	3.88	12.50	16.35	20.76	0.15	0.11	2.90
	MeCorS	4.38	3.80	7.93	8.86	12.82	2.30	2.39	3.27
# indels per 100 kbp	raw	0.32	0.24	0.69	1.47	1.09	0.13	0.09	0.36
	BayesHammer	0.32	0.29	0.79	1.52	1.51	0.11	0.09	0.34
	MeCorS	0.25	0.31	0.53	0.90	0.85	0.09	0.09	0.18
Genome fraction (%)	raw	93.656	97.182	93.344	87.892	83.101	98.266	98.245	96.104
	BayesHammer	93.631	97.165	93.304	87.924	82.958	98.211	98.175	96.028
	MeCorS	93.928	97.431	93.988	88.827	84.053	98.271	98.252	96.265
# genes	raw	3873	4049	3741	3477	3220	4186	4191	4027
	BayesHammer	3859	4052	3709	3469	3208	4194	4199	4005
	MeCorS	3931	4126	3857	3593	3347	4204	4202	4088

We assembled all sets of reads with IDBA-UD¹³, version 1.1.2. We modified its source code to increase the maximum allowed read length from 128 to 256 by modifying kMaxShortSequence in src/sequence/short_sequence.h, as described by the developers.

IDBA-UD expects read pairs interleaved and in Fasta format. For conversion we used IDBA-UD's helper tool fq2fa:

Then, we assembled all read sets with idba_ud (default settings):

```
for f in Eco*.fasta; do
    echo idba_ud -r $f -o idba_${f%.fasta}
done
```

Lastly, we used QUAST¹⁴, version 3.1, to evaluate the IDBA-UD assemblies.

Table S₃: **IDBA-UD assembly results**. Quality assessment with QUAST.

¹³ Peng, Y. *et al.* (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, **28**(11), 1420–1428

¹⁴ Gurevich, A. *et al.* (2013). QUAST: quality assessment tool for genome assemblies. *Bioinformatics*, **29**(8), 1072–1075

SPAdes assemblies

		SAG							
Metric	Program	0	1	2	3	4	6	7	8
NG50	raw	65444	95218	66287	48903	26823	114661	117715	86966
	BayesHammer	86625	95218	67436	52817	31448	120770	132608	105995
	MeCorS	86625	95517	72055	53947	36236	112350	132608	112853
# contigs	raw	447	400	606	718	813	245	233	324
	BayesHammer	302	275	474	594	676	198	185	250
	MeCorS	288	279	418	534	569	210	213	263
Largest contig	raw	203603	224667	218793	178300	113773	269308	268816	223154
	BayesHammer	204882	203257	218793	167410	135551	312119	269348	269318
	MeCorS	203394	224320	218793	178231	155221	268535	312008	268327
Total length	raw	4522153	4703061	4533214	4290463	4138591	4713277	4718163	4633297
	BayesHammer	4443696	4633876	4464269	4233011	4046113	4686582	4689565	4584513
	MeCorS	4452849	4645907	4471868	4240428	4065827	4698390	4702810	4600454
# misassemblies	raw	15	2	22	45	51	1	3	12
	BayesHammer	11	7	19	31	38	1	2	7
	MeCorS	6	3	10	23	22	1	0	6
# mismatches per 100 kbp	raw	15.30	11.57	34.70	48.21	50.53	2.84	2.14	9.72
	BayesHammer	12.70	10.30	30.34	40.41	48.42	1.27	2.17	7.66
	MeCorS	10.41	9.32	22.69	30.86	36.47	5.66	5.21	8.43
# indels per 100 kbp	raw	0.89	1.17	2.26	4.48	4.24	0.31	0.22	1.00
	BayesHammer	1.17	1.19	3.16	3.48	4.58	0.24	0.35	0.94
	MeCorS	0.64	0.95	2.24	3.30	3.28	0.55	0.31	0.83
Genome fraction (%)	raw	94.241	97.948	94.239	89.098	84.372	98.665	98.708	96.702
	BayesHammer	94.050	97.527	93.984	89.133	84.220	98.505	98.446	96.459
	MeCorS	94.223	97.629	94.223	89.543	84.798	98.580	98.541	96.603
# genes	raw	3876	4117	3782	3532	3281	4217	4224	4081
	BayesHammer	3898	4124	3805	3562	3300	4211	4219	4093
	MeCorS	3937	4133	3866	3608	3390	4218	4220	4097

Table S4: **SPAdes assembly results**. Quality assessment with QUAST.

We assembled all read sets with SPAdes, version 3.6.0:

The parameter --careful minimizes the number of mismatches in the final contigs. We empirically selected -k 21,33,55,77 to account for longer SAG sequencing reads. Iterating over these four *k*-mer sizes generated assemblies of higher contiguity than the default settings of -k 21,33,55, while maintaining a high accuracy.

We used QUAST again to evaluate the SPAdes assemblies. While there are subtle differences between the IDBA-UD and SPAdes assemblies, both results demonstrate the large potential of metagenome-enabled error correction.

Running MeCorS multithreaded

Figure S3: **Effeciency of threading.** MeCorS defaults to using 16 threads.

MeCorS uses the same multithreading strategy as e.g. bwa (and re-uses chunks of Heng Li's source code, released under the MIT license). Briefly, MeCorS first reads a batch of N sequencing reads containing B bases, and then processes these in t threads.

On our systems, we seem to run into an I/O bottleneck using 16 threads and a batch size of 100 Mbp. Increasing the batch size and/or the number of threads did not speed up computation, therefore we picked these as defaults. The parameters -B and -t allow the user to adjust these settings.

References

- Bankevich, A. *et al.* (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.*, **19**(5), 455–477.
- Bowers, R. M. et al. (2015). Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. BMC Genomics, 16(1), 856.
- Clingenpeel, S. *et al.* (2014a). Effects of sample treatments on genome recovery via single-cell genomics. *ISME J*, **8**(12), 2546–2549.
- Clingenpeel, S. *et al.* (2014b). Reconstructing each cell's genome within complex microbial communities–dream or reality? *Front Microbiol*, **5**, 771.
- Gurevich, A. *et al.* (2013). QUAST: quality assessment tool for genome assemblies. *Bioinformatics*, **29**(8), 1072–1075.
- Kelley, D. R., Schatz, M. C., and Salzberg, S. L. (2010). Quake: quality-aware detection and correction of sequencing errors. *Genome Biol.*, **11**(11), R116.
- Lasken, R. S. and Stockwell, T. B. (2007). Mechanism of chimera formation during the Multiple Displacement Amplification reaction. *BMC Biotechnol.*, 7, 19.
- Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*:1303.3997.
- Li, H. (2015). BFC: correcting Illumina sequencing errors. Bioinformatics, 31(17), 2885-2887.
- Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*, **26**(5), 589–595.
- Li, H. et al. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
- Nikolenko, S. I. *et al.* (2013). BayesHammer: Bayesian clustering for error correction in single-cell sequencing. *BMC Genomics*, **14 Suppl 1**, S7.
- Peng, Y. *et al.* (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*, **28**(11), 1420–1428.