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STATISTICAL METHODS
A full description of the hypothesis testing procedures for the mean
matrix and the covariance matrices can be found in Touloumis
et al. (2015) and Touloumis et al. (2014), respectively. Herein, we
derive the exact formulae for the shrinkage estimators of the two
covariance matrices ΣC and ΣR. To accomplish this, we extend
the Stein-type covariance matrix estimation approach employed
in Touloumis (2015) for estimating a single covariance matrix
with vector-valued random variables to simultaneous estimation of
two covariance matrices with matrix-valued random variables. For
identifiability reasons, we impose the restriction tr(ΣR) = r (see
Touloumis et al., 2014), where tr(A) denotes the trace of the square
matrix A, that is the sum of the diagonal elements of A. It can
be readily shown that the gene-wise variance scaling restriction
tr(ΣR) = r does not affect the gene- and column-wise correlation
pattern.

To estimate the column covariance matrixΣC, first let

Σ∗C = (1− λC)
1

Nr

N∑
i=1

Y T
i Yi + λCµCIc (1)

where Yi = Xi − M̂ , M̂ is the sample mean matrix, and
where Ic is the identity matrix of size c. The optimal shrinkage
intensity λC and the parameter µC are defined so as to minimise the
expectation of tr

[
(Σ∗C −ΣC)

2
]
. This strategy leads to the closed

form solutions
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and µC = tr(ΣC)/c. Both λC and µC depend on the unknown
parameters tr(ΣC), tr(Σ2

C) and tr(Σ2
R) which can be estimated
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respectively. Here, Ri denotes the vectorized form of Xi obtained
by stacking the columns of Xi on top of one another. Following
results in Touloumis et al. (2014), it can be shown that T1N , T2N

and T3N are consistent estimators of tr(ΣC), tr(Σ2
C) and tr(Σ2

R),
respectively. Thus, we estimate λC with the consistent estimator

λ̂C =

T3N
r2(N−1)

(
T 2
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)
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1N + T2N ) + T2N − T 2
1N/c

and we estimate µC with the consistent estimator

µ̂C = T1N/c.
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Finally, the shrinkage estimator of the column covariance matrix
ΣC is the plug-in estimator of (1), that is

Σ̂C = (1− λ̂C)
1

Nr

N∑
i=1

Y T
i Yi + λ̂Cµ̂CIc.

Next, to estimate the row covariance matrixΣR, let

Σ∗R = (1− λR)
1
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where
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. In a similar

manner as with Σ∗C, we can estimate λR with the consistent
estimator
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and then use
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as a shrinkage estimator of the gene covariance matrixΣR.
Derivation of the expectations of tr

[
(Σ∗C −ΣC)

2
]

and
tr
[
(Σ∗R −ΣR)

2
]

relies on a matrix-variate normal model (Allen
and Tibshirani, 2010) assumption for the matrix-valued random
variables X1, . . . ,XN . However, under mild moment assumptions
outlined in Touloumis et al. (2014) and by carrying out similar
arguments as in Touloumis (2015), it can be argued that Σ̂R and Σ̂C

are robust to departures from the normality assumption. Therefore,
HDTD implements nonparametric estimation and testing procedures
that can be used beyond the scope of the matrix-variate normal
model.

MULTIPLE TISSUE EXAMPLE
The “GTEx Analysis V4” gene-expression RPKM values were
available for downloading from http://www.gtexportal.org/home
(last assessed on March 19, 2016). The subsamples were then
identified using the accompanying annotation files.

The nine tissue samples in each subject-specific data matrix were
ordered as skin (sun exposed), nerve, adipose (subcutaneous), artery
(tibial), lung, skeletal muscle, heart (left ventricle), blood and
thyroid. The estimated tissue covariance matrix Σ̂C is given in
Table 1 and the resulting tissue-wise correlation matrix calculated
from Σ̂C is given in Table 2 (both Tables are presented using a
two-letter abbrevation for the tissues). From these two matrices,
we can infer the tissue-specific variability by inspecting the
diagonal elements of Σ̂C and the correlation of all possible tissue
pairs. For example, the estimated variances for the lung and
the skeletal muscle are 18244.2 and 27828.3 respectively, while

their correlation is 0.13, that is the element (5,6) in Table 2. By
comparing the diagonal elements of Σ̂C, we can deduce that blood
was the most variable tissue (SE =

√
757511.9 = 870.4).

Table 3 displays the adjusted p-values that are greater than 0.05
when testing the sphericity hypothesis for all possible pairs of
tissues. Although we rejected the sphericity hypothesis for the
majority of tissue pairs, it is worth noting that the skin, the
adipose and the lung tissue appear to form a network of mutually
uncorrelated tissues with equal variance (p-value= 0.082).

Table 4 displays the adjusted p-values when testing the statistical
significance of the tissue-specific gene-lists provided by Melé et al.
(2015). For a given tissue, small adjusted p-values across the
remaining eight tissues suggest that the differential expression of
the gene-list under study is tissue-specific. From our analysis, the
tissue-specificity of the artery-, adipose- and thyroid-specific gene
lists provided by Melé et al. (2015) was not supported.

The analysis in the main text and the Supplementary Materials
can be reproduced by executing the commands in the R script.
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Table 1. The estimated tissue-wise covariance matrix Σ̂C.

SK NE AD AR LU SM HE BL TH

SK 19122.9 576.1 263.6 519.7 543.9 1176.7 2995.3 208.3 1159.8
NE 576.1 16882.4 554.0 860.1 751.6 1847.0 2723.1 138.3 1050.0
AD 263.6 554.0 17523.0 461.8 416.6 741.5 1286.6 159.2 617.4
AR 519.7 860.1 461.8 17070.6 796.2 1904.7 2442.6 300.5 1190.7
LU 543.9 751.6 416.6 796.2 18244.2 2824.8 5641.3 3497.2 1963.9
SM 1176.7 1847.0 741.5 1904.7 2824.8 27828.3 13027.8 348.6 3589.7
HE 2995.3 2723.1 1286.6 2442.6 5641.3 13027.8 53880.8 1231.6 9565.9
BL 208.3 138.3 159.2 300.5 3497.2 348.6 1231.6 757511.9 4730.4
TH 1159.8 1050.0 617.4 1190.7 1963.9 3589.7 9565.9 4730.4 20444.9

Table 2. The estimated tissue-wise correlation matrix based on Σ̂C.

SK NE AD AR LU SM HE BL TH

SK 1.00 0.03 0.01 0.03 0.03 0.05 0.09 0.00 0.06
NE 0.03 1.00 0.03 0.05 0.04 0.09 0.09 0.00 0.06
AD 0.01 0.03 1.00 0.03 0.02 0.03 0.04 0.00 0.03
AR 0.03 0.05 0.03 1.00 0.05 0.09 0.08 0.00 0.06
LU 0.03 0.04 0.02 0.05 1.00 0.13 0.18 0.03 0.10
SM 0.05 0.09 0.03 0.09 0.13 1.00 0.34 0.00 0.15
HE 0.09 0.09 0.04 0.08 0.18 0.34 1.00 0.01 0.29
BL 0.00 0.00 0.00 0.00 0.03 0.00 0.01 1.00 0.04
TH 0.06 0.06 0.03 0.06 0.10 0.15 0.29 0.04 1.00

Table 3. List of adjusted p-values > 0.05 from applying the sphericity test to all possible tissue pairs.

Tissue 1 Tissue 2 Adjusted p-value

skin adipose 0.2837
skin lung 0.5914
skin thyroid 0.1099
nerve adipose 0.0588
adipose artery 0.7992
adipose lung 0.2724

Table 4. The adjusted p-values from testing the significance of tissue-specific gene lists (rows) to each one of the remaining tissues (columns).

Tissue-Specific Gene List SK NE AD AR LU SM HE BL TH

SK 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AD 0.105 0.043 0.001 0.000 0.000 0.000 0.000 0.003
AR 0.668 0.716 0.007 0.000 0.000 0.000 0.148 0.000
LU 0.037 0.000 0.000 0.001 0.000 0.000 0.007 0.000
SM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
TH 0.000 0.000 0.000 0.000 0.000 0.781 0.000 0.000
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