1	Supplementary Information
2	
3	Salmonella Degrades the Host Glycocalyx Leading to
4	Altered Infection and Glycan Remodeling
5	
6	Narine Arabyan ¹ , Dayoung Park ² , Soraya Foutouhi ¹ , Allison M. Weis ¹ , Bihua C. Huang ¹ , Cynthia C. Williams ² ,
7	Prerak Desai ^{1†} , Jigna Shah ^{1‡} , Richard Jeannotte ^{1£,4} , Nguyet Kong ¹ , Carlito B. Lebrilla ^{2,3} , and Bart C. Weimer ^{1*}
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	1

1132 bp

	WT Gene	WT Junction	KO Gene	KO Junction
melA	+	-	-	+
nanH	+	-	-	+
CHPNeu	+	-	-	+
malS	+	-	-	+
glgX	+	-	-	+

Supplementary Figure S1. Generation of specific deletions in Salmonella LT2. (A) The schematic of 54 55 targeted gene deletion. Here, *nanH* gene is depected as an example. Two 70-mer primers amplify the region containing the chloramphenicol resistance cassette (CmR) from plasmid pKD3. The resulting linear PCR 56 product has 50 bases at each end that are homologous to the sequence of *nanH*. Transformation of this PCR 57 product into Salmonella LT2 that expresses λ -Red recombinase leads to homologous recombination event 58 59 resulting in the exchange of the *nanH* with CmR. All mutant strains used in this study were generated in the same way. PCR results of each deletion are summarized in the schematic. (B) Single gene analyses using 60 MUSCLE to determine deletion of target gene and insertion of *cat* (Chloramphenicol acetyltransferase). The 61 gene of interest and the neighboring area were extracted from each genome compared to the wild type to verify 62 63 the lack of rearrangement and the targeted double cross over replacement. In each comparison, the black track

64	represents the segment of interest in the wild type and green track represents the corresponding segment in the
65	deletion strain. The absence of the gene of interest and the presence of the chloramphenicol resistance gene (cat
66	CDS) in the knockout strain verified the targeted distruption. The gene (CDS) arrangement for each comparison
67	is shown (gray bars). The upstream and downstream regions have 100% homology within the neighborhood.
68	(C) Mauve visualisation of whole genome alignment and comparison. Salmonella Typhimurium LT2 was used
69	as the reference genome (top track) and compared to each of the individual deletion genomes. This analysis
70	showed genome block homology and gene neighborhood conservation. Reference based assembly also showed
71	that only the gene of interest was replaced with the chloramphenicol resistance gene. Both analyses (de nove
72	and reference based assemblies) found that these genomes were syntenic.

- ---

Supplementary Figure S2. Diversity of sialidases in nature. Phylogenetic trees of nanH (A) and CHPNeu 102 103 (B). This study bioinformatically examined the sialidase diversity and genomic distribution among microbes. Phylogenetic trees were constructed using a Neighbor-Joining consensus tree with 1000 bootstrap replicates. 104 This analysis revealed that members of the same genera (indicated with the same color) were found on different 105 106 sialidase clades (Escherichia coli, Klebsiella spp., Bacillus spp., Pseudomonas spp., Helicobacter spp., Bacteroides spp., Clostridium spp., Streptococcus spp., Salmonella spp., Rumonococcus spp.), indicating 107 widespread horizontal gene transfer (HGT). CHPNeu and nanH were widely distributed among pathogenic and 108 109 commensal bacteria and parasites. nanH was most closely related to Clostridium perfringens, suggesting that Salmonella Typhimurium LT2 acquired this gene as a result of HGT. The direct impact of multiple sialidases 110 remains to be explored. Each color represents different genera. Bootstrap values are listed on each branch. 111

- 112 Nodes represent speciation events. Branch length represents the degree of evolutional changes over time. The
- scale bar at the bottom of each tree is nucleotide substitutions per site.

- -----

Α

Conserved domains on STM0928 - nanH, sialidase

В

Conserved domains on STM1252 - CHPNeu, Conserved Hydrolase Predicted Neuraminidase (sialidase)

138

Supplementary Figure S3. Comparison of sialidases nanH and CHPNeu. The two sialidases from 139 Salmonella enterica Typhimurium LT2 have the same domains and function as sialidases. The conserved 140 regions in nanH (A) and CHPNeu (B) include an Asp-box motifs (with conserved residues: Ser/Thr-X-Asp-[X]-141 Gly-X-Thr- Trp/Phe) and a BNR repeat-like domain that suggests it may act as a sialidase, however they are 142 structurally very different. While the function and domains of sialidases demonstrate homology; structural and 143 domain organization demonstrate that these genes have undergone domain shuffling or may be orthologs. 144 Domain shuffling is not a common event in proteins that are important for infection and are under strong 145 diversifying selection pressures. This difference led to different invasion phenotypes during the in vitro 146 infection of Caco-2 cells. 147

148

Α

Conserved domains on STM3664 - malS, α-amylase

В

Conserved domains on STM3537 – g/gX, glycogen debranching enzyme

150

Supplementary Figure S4. Comparison of amylases *malS* and *glgX*. The two amylase-like enzymes in *Salmonella* LT2 also showed opposite results. Both enzymes had similar domains, however, both had structural variations. (A) *malS* is composed of an α -amylase domain and four catalytic sites. (B) The glycogen debranching enzyme, glgX, contains an α -amylase catalytic domain. On N-terminal side, glgX has an E or early set domain that is associated with the catalytic domain of the Glycogen debranching enzyme and bacterial isoamylase.

- 157
- 158
- 159
- 160
- 161

Supplementary Figure S5. Glycan profiles. (A) An extracted compound chromatogram of counts vs. retention time is shown for uninfected Caco-2 cells. Each peak corresponds to a glycan which are colored distinguish between high mannose, neutral (no decorations) complex/hybrid, fucosylated, sialylated, and both fucosylated & sialylated glycans. (B) Glycan compositions found in Caco-2 after 1 hour of infection with *Salmonella* LT2. Select glycan structures that change during the course of infection have been assigned with putative structures.

- 168
- 169
- 170

Precursor *m/z* 914.85

Supplementary Figure S6. Representative MS/MS spectra of identified *N*-glycan structures. (A-B)
Sequential fragment losses are annotated inset. Precursor ions are indicated by a blue diamond.

- 177
- 178

Supplementary Tables

180 **Supplementary Table S1:** Gene expression intensity of *Salmonella* LT2 glycosyl hydrolases within 60 minutes

181 of infection of Caco-2 cells.

Gene ID	Gene	Gene Name	Intensity of Salmonella WT	Intensity of Caco-2 + Salmonella WT
STM4298	melA	alpha-galactosidase	4.490	2.978
STM1252	STM1252	putative cytoplasmic protein	6.120	5.658
STM0928	nanH	Neuraminidase	5.670	4.769
STM3664	malS	periplasmic alpha-amylase precursor	2.492	2.632
STM3537	glgX	glycogen debranching enzyme	3.629	4.328
STM2166	bglX	periplasmic beta-D-glucoside glucohydrolase	3.991	3.839
STM1209	nagZ	beta-hexosaminidase	4.401	4.711
STM1963	amyA	cytoplasmic alpha-amylase	3.255	3.581
STM3663	bax	putative ATP-binding protein	5.320	5.934
STM0260	dniR	transcriptional regulator	3.356	4.415
STM1799	emtA	membrane-bound lytic murein transglycosylase E	3.638	4.719
STM3617	STM3617	endo-1,4-D-glucanase	3.258	3.674
STM1242	envE	putative envelope protein	5.760	5.661
STM1182	flgJ	flagellar biosynthesis protein	3.712	4.266
STM3538	glgB	glycogen branching enzyme	4.049	5.440
STM3513	malQ	4-alpha-glucanotransferase	3.982	4.521
STM0401	\tilde{z} malZ	maltodextrin glucosidase	4.225	3.804
STM2988	mltA	membrane-bound lytic murein transglycosylase A	4.284	4.345
STM3112	mltC	membrane-bound lytic murein transglycosylase C	3.136	4.196
STM0016	STM0016	hypothetical protein	2.984	3.492
STM0018	STM0018	putative exochitinase	4.148	3.981
STM0148	STM0148	putative cytoplasmic protein	4.201	3.573
STM0233	STM0233	putative endochitinase	3.976	3.319
STM0907	STM0907	putative chitinase	4.920	4.342
STM1316	celF	phospho-beta-glucosidase/cellobiose-6- phosphate hydrolase	3.848	4.216
STM1558	STM1558	putative glycosyl hydrolase	4.235	4.913
STM1559	STM1559	putative glycosyl hydrolase	3.700	4.042
STM1560	STM1560	putative alpha amylase	4.564	3.429
STM1869A	STM1869A	hypothetical protein	3.520	3.360
STM1911	STM1911	putative cytoplasmic protein	4.076	4.975
STM2612	STM2612	morphogenesis-like protein	3.866	3.938
STM2715	STM2715.S	probable prophage lysozyme	5.393	4.265

		membrane-bound lytic murein		
STM2831	mltB	transglycosylase B	3.973	4.662
STM3051	bglA	6-phospho-beta-glucosidase A	4.780	5.603
STM3605	STM3605	putative phage endolysin	3.335	2.892
STM3679	STM3679	putative cytoplasmic protein	3.525	3.644
STM3775	STM3775	putative glycosyl hydrolase	3.990	3.874
		putative soluble lytic murein		
STM4217	STM4217	transglycosylase	4.676	4.061
		lysosomal glucosyl ceramidase-like		
STM4426	srfJ	protein	4.347	4.518
STM4582	slt	soluble lytic murein transglycosylase	3.961	3.411
STM1796	treA	Trehalase	3.190	3.920
STM4453	treC	trehalose-6-phosphate hydrolase	4.214	4.101
STM3603	treF	cytoplasmic trehalase	5.309	5.165
		putative periplasmic amino acid-binding		
STM2567	yfhD	protein	3.314	4.280
STM3749	yicI	putative alpha xylosidase	4.818	4.449
STM4019	yihQ	putative alpha-xylosidase	3.913	3.818

198	Supplementary Table S2: Glycan found on Caco-2 cells and their changes during Salmonella infection. Ratios
199	greater than 1 means increase in glycan abundance during infection, less than 1 means deacrease in glycan
200	abundance during infection, ratios of about 1 means that glycan abundances did not change during infection,
201	ratios equal to 0 means glycans disappeared during infection, and lastly, ratios that were undefined means that
202	these are new glycans biosynthesized <i>de novo</i> . $C = complex$, $H = hybrid$, $F = fucosylated$, $S = sialylated$, and FS
203	= fucosylated and sialylated.
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	

	Theoretical Glycan Mass*	Glycan Composition	Class	Ratio of Infected / Uninfected	Structure
1	2061.751	Hex4HexNAc4Fuc2Neu5Ac1	C-FS	28.513	++ <u> </u>
2	2953.047	Hex7HexNAc6Neu5Ac2	C-S	22.386	÷.
3	2776.020	Hex5HexNAc6Fuc3Neu5Ac1	C-FS	5.334	+
4	2363.898	Hex3HexNAc7Fuc3	C-F	5.280	N.
5	1519.566	Hex3HexNAc5	С	4.899	
6	2556.946	Hex4HexNAc5Fuc4Neu5Ac1	C-FS	4.143	t t
7	2280.825	Hex5HexNAc5Fuc1Neu5Ac1	C/H-FS	3.199	÷ ÷
8	2692.946	Hex ₇ HexNAc ₄ Fuc ₁ Neu5Ac ₂	H-FS	3.106	T.
9	1681.619	Hex4HexNAc5	C/H	2.962	÷
10	2938.073	Hex ₆ HexNAc ₆ Fuc ₃ Neu5Ac ₁	C-FS	2.811	+
11	2734.993	Hex ₆ HexNAc ₅ Fuc ₃ Neu5Ac ₁	C/H-FS	2.808	
12	1925.725	Hex ₃ HexNAc ₇	С	2.769	Ý
13	2014.761	Hex ₃ HexNAc ₆ Fuc ₂	C-F	2.505	Ϋ́
14	2167.777	Hex7HexNAc5	н	2.341	ų.
15	3099.105	Hex7HexNAc6Fuc1Neu5Ac2	C-FS	2.219	
16	1316.487	Hex3HexNAc4	С	2.168	:>
17	1843.672	Hex5HexNAc5	C/H	2.126	÷>
18	1722.645	Hex3HexNAc6	С	2.022	<u>}</u>
19	2702.979	Hex ₆ HexNAc ₇ Neu5Ac ₁	C-S	2.022	·\$•

20	1884.698	Hex4HexNAc6	С	2.018	•
21	2160.819	Hex ₃ HexNAc ₆ Fuc ₃	C-F	1.985	T.
22	2071.783	Hex ₃ HexNAc ₇ Fuc ₁	C-F	1.940	
23	1558.539	GlcNAc2Man7	НМ	1.803	•
24	2996.115	Hex ₆ HexNAc ₇ Fuc ₄	C-F	1.792	
25	1624.597	Hex ₄ HexNAc ₄ Fuc ₁	C/H-F	1.786	•
26	1478.539	Hex4HexNAc4	C/H	1.738	•
27	2379.893	Hex4HexNAc7Fuc2	C-F	1.733	t ↓
28	2937.052	Hex ₆ HexNAc ₆ Fuc ₁ Neu5Ac ₂	C-FS	1.707	
29	1072.381	GlcNAc2Man4	НМ	1.694	•-
30	2686.984	Hex ₅ HexNAc ₇ Fuc ₁ Neu5Ac ₁	C-FS	1.641	
31	1712.613	Hex4HexNAc3Fuc1Neu5Ac1	C-FS	1.614	•••• [>••-Ĭ

Ŧ

32	2733.973	Hex ₆ HexNAc ₅ Fuc ₁ Neu5Ac ₂	C/H-FS	1.515	÷∰>7
33	910.328	GlcNAc ₂ Man ₃	НМ	1.501	¥
34	1234.433	GlcNAc2Man5	НМ	1.495	÷
35	2718.999	Hex5HexNAc5Fuc4Neu5Ac1	C-FS	1.473	+2
36	1720.592	GlcNAc2Man8	НМ	1.470	: >
37	1665.624	Hex ₃ HexNAc ₅ Fuc ₁	C-F	1.384	ų L
38	1396.486	GlcNAc ₂ Man ₆	НМ	1.356	¥
39	1113.407	Hex ₃ HexNAc ₃	С	1.356	•- >•-•
40	1882.645	GlcNAc ₂ Man ₉	НМ	1.339	
41	1973.735	Hex4HexNAc5Fuc2	C/H-F	1.334	t t
42	1827.677	Hex ₄ HexNAc ₅ Fuc ₁	C/H-F	1.326	t t
43	1802.645	Hex ₆ HexNAc ₄	н	1.308	::>···
44	3302.185	Hex7HexNAc7Fuc1Neu5Ac2	C-FS	1.298	t t
45	2118.772	Hex4HexNAc5Fuc1Neu5Ac1	C-FS	1.293	t.
46	1989.729	Hex5HexNAc5Fuc1	C/H-F	1.281	Ϋ́
47	1437.513	Hex5HexNAc3	н	1.254	,
48	2369.861	Hex5HexNAc4Fuc3Neu5Ac1	C/H-FS	1.149	-
49	2321.851	Hex4HexNAc6Fuc1Neu5Ac1	C-FS	1.137	>
50	2792.015	Hex ₆ HexNAc ₆ Fuc ₂ Neu5Ac ₁	C-FS	1.117	-
51	2483.904	Hex5HexNAc6Fuc1Neu5Ac1	C-FS	1.117	-

52	2087.778	Hex4HexNAc7	С	1.108	•
53	2217.841	Hex3HexNAc7Fuc2	C-F	1.097	<u>}-</u> -
54	2134.767	Hex5HexNAc5Neu5Ac1	C/H-S	1.094	•
55	2865.031	Hex7HexNAc7Neu5Ac1	C-S	1.091	
56	2046.751	Hex5HexNAc6	С	1.059	· · · ·
57	1275.460	Hex4HexNAc3	C/H	1.057	•
58	2223.803	Hex5HexNAc4Fuc2Neu5Ac1	C/H-FS	1.052	-
59	1640.592	Hex5HexNAc4	C/H	1.045	#2>++
60	2688.004	Hex5HexNAc7Fuc3	C-F	1.042	:
61	1915.693	Hex4HexNAc4Fuc1Neu5Ac1	C-FS	1.033	•
62	3157.147	Hex ₇ HexNAc ₇ Fuc ₂ Neu5Ac ₁	C-FS	1.010	-
63	3303.205	Hex7HexNAc7Fuc3Neu5Ac1	C-FS	1.008	
64	2995.094	Hex ₆ HexNAc ₇ Fuc ₂ Neu5Ac ₁	C-FS	1.000	
65	1462.544	Hex ₃ HexNAc ₄ Fuc ₁	C-F	0.998	₽>+-
66	1745.623	Hex ₆ HexNAc ₃ Fuc ₁	H-F	0.995	
67	2629.962	Hex5HexNAc6Fuc2Neu5Ac1	C-FS	0.990	+
68	1868.703	Hex ₃ HexNAc ₆ Fuc ₁	C-F	0.972	<u>}</u>
69	1972.714	Hex4HexNAc5Neu5Ac1	C-S	0.929	
70	1769.635	Hex4HexNAc4Neu5Ac1	C-S	0.925	···
71	2524.931	Hex4HexNAc7Fuc1Neu5Ac1	C-FS	0.923	

72	2808.010	Hex7HexNAc6Fuc1Neu5Ac1	C-FS	0.921	-
73	2866.052	Hex7HexNAc7Fuc2	C-F	0.920	₩
74	1259.465	Hex ₃ HexNAc ₃ Fuc ₁	C-F	0.907	•
75	2880.031	Hex ₆ HexNAc ₅ Fuc ₂ Neu5Ac ₂	C/H-FS	0.906	:
76	1599.566	Hex ₆ HexNAc ₃	Н	0.887	
77	2833.042	Hex5HexNAc7Fuc2Neu5Ac1	C-FS	0.886	·**
78	2093.740	Hex ₆ HexNAc ₄ Neu5Ac ₁	H-S	0.870	
79	2775.000	Hex5HexNAc6Fuc1Neu5Ac2	C-FS	0.853	÷.
80	2249.830	Hex ₅ HexNAc ₇	С	0.851	*
81	2135.787	Hex5HexNAc5Fuc2	C/H-F	0.850	÷
82	2587.915	Hex ₆ HexNAc ₅ Neu5Ac ₂	C/H-S	0.843	*
83	2790.995	Hex ₆ HexNAc ₆ Neu5Ac ₂	C-S	0.809	4
84	2222.783	Hex ₅ HexNAc ₄ Neu5Ac ₂	C-S	0.801	:::>
85	2176.814	Hex ₄ HexNAc ₆ Fuc ₂	C-F	0.795	
86	2425.862	Hex5HexNAc5Neu5Ac2	C-S	0.789	
87	3026.089	Hex ₆ HexNAc ₅ Fuc ₃ Neu5Ac ₂	C/H-FS	0.784	
88	2208.804	Hex ₆ HexNAc ₆	С	0.765	\$
89	2645.957	Hex ₆ HexNAc ₆ Fuc ₁ Neu5Ac ₁	C-FS	0.760	-
90	2525.951	Hex4HexNAc7Fuc3	C-F	0.757	-
91	1380.491	GlcNAc ₂ Man ₅ Fuc ₁	HM-F	0.756	:>+14

92	1421.518	Hex4HexNAc3Fuc1	C/H-F	0.749	>Ĭ_
93	2541.946	Hex5HexNAc7Fuc2	C-F	0.748	:
94	2540.926	Hex5HexNAc7Neu5Ac1	C-S	0.717	
95	2296.820	Hex ₆ HexNAc ₅ Neu5Ac ₁	C/H-S	0.710	+
96	2044.697	GlcNAc2Man10	НМ	0.697	°-
97	3229.168	Hex ₆ HexNAc ₆ Fuc ₃ Neu5Ac ₂	C-FS	0.694	:
98	1770.655	Hex4HexNAc4Fuc2	C/H-F	0.690	
99	2516.914	Hex7HexNAc6Fuc1	C-F	0.689	¥
100	2588.936	Hex ₆ HexNAc ₅ Fuc ₂ Neu5Ac ₁	C/H-FS	0.684	-
101	2411.883	Hex ₆ HexNAc ₇	С	0.680	
102	2614.988	Hex ₄ HexNAc ₆ Fuc ₅	C-F	0.678	
103	2442.878	Hex ₆ HexNAc ₅ Fuc ₁ Neu5Ac ₁	C/H-FS	0.668	-#>
104	2849.036	Hex ₆ HexNAc ₇ Fuc ₁ Neu5Ac ₁	C-FS	0.666	÷
105	3083.110	Hex ₆ HexNAc ₆ Fuc ₂ Neu5Ac ₂	C-FS	0.664	ų L
106	2467.909	Hex ₄ HexNAc ₆ Fuc ₂ Neu5Ac ₁	C-FS	0.663	•••
107	2703.999	Hex ₆ HexNAc ₇ Fuc ₂	C-F	0.660	÷.
108	2030.756	Hex ₄ HexNAc ₆ Fuc ₁	C-F	0.634	• • •
109	2978.079	Hex5HexNAc7Fuc1Neu5Ac2	C-FS	0.617	#\$~-!
110	2646.977	Hex ₆ HexNAc ₆ Fuc ₃	C-F	0.602	
111	3140.132	Hex ₆ HexNAc ₇ Fuc ₁ Neu5Ac ₂	C-FS	0.597	:

112	2557.941	Hex ₆ HexNAc ₇ Fuc ₁	C-F	0.596	- i }÷÷i
113	2077.745	Hex5HexNAc4Fuc1Neu5Ac1	C/H-FS	0.594	.
114	3011.089	Hex7HexNAc7Fuc1Neu5Ac1	C-FS	0.592	- 🖗 -
115	2426.883	Hex5HexNAc5Fuc2Neu5Ac1	C/H-FS	0.592	-
116	1874.666	Hex5HexNAc3Fuc1Neu5Ac1	H-FS	0.584	
117	2354.862	Hex ₆ HexNAc ₆ Fuc ₁	C-F	0.577	썿
118	2233.835	Hex4HexNAc7Fuc1	C-F	0.570	\$ 1
119	1583.571	Hex5HexNAc3Fuc1	H-F	0.566	. 1
120	2571.920	Hex5HexNAc5Fuc1Neu5Ac2	C-FS	0.566	H H
121	1948.703	Hex ₆ HexNAc ₄ Fuc ₁	H-F	0.564	Ψ
122	2719.994	Hex7HexNAc7Fuc1	C-F	0.563	ų L
123	2192.809	Hex5HexNAc6Fuc1	C-F	0.561	ų" t
124	1811.682	Hex ₃ HexNAc ₅ Fuc ₂	C-F	0.553	T.
125	2395.888	Hex5HexNAc7Fuc1	C-F	0.547	: :
126	1542.544	GlcNAc ₂ Man ₆ Fuc ₁	HM-F	0.547	ų T
127	1786.650	Hex5HexNAc4Fuc1	C/H-F	0.544	:::>+!
128	2281.845	Hex5HexNAc5Fuc3	C/H-F	0.542	
129	1964.698	Hex7HexNAc4	н	0.528	
130	1608.602	Hex3HexNAc4Fuc2	C-F	0.511	
131	2662.972	Hex7HexNAc6Fuc2	C-F	0.492	tan an a

132	1728.608	Hex5HexNAc3Neu5Ac1	H-S	0.489	••••••
133	2402.871	Hex7HexNAc4Fuc3	H-F	0.488	μ.
134	1566.555	Hex4HexNAc3Neu5Ac1	C-S	0.484	····
135	1890.661	Hex ₆ HexNAc ₃ Neu5Ac ₁	H-S	0.482	
136	2573.936	Hex7HexNAc7	С	0.480	Ŵ
137	2151.782	Hex ₆ HexNAc ₅ Fuc ₁	C/H-F	0.479	<mark>B≻-</mark> F
138	2005.724	Hex ₆ HexNAc ₅	C/H	0.467	
139	2660.957	Hex5HexNAc4Fuc3Neu5Ac2	C-FS	0.465	T T
140	2207.808	Hex4HexNAc4Fuc3Neu5Ac1	C-FS	0.459	[]>
141	2717.978	Hex5HexNAc5Fuc2Neu5Ac2	C-FS	0.445	÷.
142	1056.386	GlcNAc ₂ Man ₃ Fuc ₁	HM-F	0.441	÷.
143	2338.867	Hex5HexNAc6Fuc2	C-F	0.440	ų.
144	2175.794	Hex4HexNAc6Neu5Ac1	C-S	0.431	ţ
145	2832.021	Hex5HexNAc7Neu5Ac2	C-S	0.424	ti t
146	2264.830	Hex4HexNAc5Fuc2Neu5Ac1	C-FS	0.421	<u></u>
147	2443.898	Hex ₆ HexNAc ₅ Fuc ₃	C/H-F	0.421	
148	2823.009	Hex ₆ HexNAc ₄ Fuc ₃ Neu5Ac ₂	H-FS	0.414	
149	2036.719	Hex ₆ HexNAc ₃ Fuc ₁ Neu5Ac ₁	H-FS	0.413	
150	2572.941	Hex5HexNAc5Fuc3Neu5Ac1	C/H-FS	0.402	
151	1931.688	Hex5HexNAc4Neu5Ac1	C/H-S	0.384	·::>

152	2500.920	Hex ₆ HexNAc ₆ Fuc ₂	C-F	0.374	
153	2368.841	Hex5HexNAc4Fuc1Neu5Ac2	C-FS	0.370	;;;;>+ -
154	1218.438	GlcNAc ₂ Man ₄ Fuc ₁	HM-F	0.352	-0
155	2239.798	Hex ₆ HexNAc ₄ Fuc ₁ Neu5Ac ₁	H-FS	0.296	
156	2255.793	Hex7HexNAc4Neu5Ac1	H-S	0.285	ţ.
157	2028.702	GlcNAc2Man9Fuc1	HM-F	0.283	
158	1704.597	GlcNAc ₂ Man ₇ Fuc ₁	HM-F	0.276	+
159	3025.068	Hex ₆ HexNAc ₅ Fuc ₁ Neu5Ac ₃	C-FS	0.274	Ψ
160	2401.851	Hex ₇ HexNAc ₄ Fuc ₁ Neu5Ac ₁	H-FS	0.267	t.
161	3158.168	Hex7HexNAc7Fuc4	C-F	0.235	
162	2378.873	Hex4HexNAc7Neu5Ac1	C-S	0.228	ţ
163	2661.952	Hex7HexNAc6Neu5Ac1	C-S	0.223	÷
164	1932.708	Hex5HexNAc4Fuc2	C/H-F	0.207	±, −
165	2954.068	Hex7HexNAc6Fuc2Neu5Ac1	C-FS	0.196	÷
166	3448.243	Hex7HexNAc7Fuc2Neu5Ac2	C-FS	0.184	ų.
167	3228.148	Hex ₆ HexNAc ₆ Fuc ₁ Neu5Ac ₃	C-FS	0.182	ሢ
168	1916.713	Hex4HexNAc4Fuc3	C/H-F	0.171	-
169	2777.040	Hex5HexNAc6Fuc5	C-F	0.169	:
170	2410.888	Hex4HexNAc5Fuc3Neu5Ac1	C-FS	0.166	
171	2337.846	Hex5HexNAc6Neu5Ac1	C-S	0.161	-

172	2955.088	Hex7HexNAc6Fuc4	C-F	0.147	ų.
173	2509.956	Hex3HexNAc7Fuc4	C-F	0.138	
174	3593.280	Hex7HexNAc7Fuc1Neu5Ac3	C-FS	0.133	Ψ
175	1891.681	Hex ₆ HexNAc ₃ Fuc ₂	H-F	0.126	t. L
176	3084.131	Hex ₆ HexNAc ₆ Fuc ₄ Neu5Ac ₁	C-FS	0.082	
177	2879.011	Hex ₆ HexNAc ₅ Neu5Ac ₃	C-S	0.067	∷
178	3375.226	Hex ₆ HexNAc ₆ Fuc ₄ Neu5Ac ₂	C-FS	0.041	T T
179	2110.756	Hex7HexNAc4Fuc1	H-F	0.000	ų.
180	1405.523	Hex ₃ HexNAc ₃ Fuc ₂	C-F	0.000	10-1
181	2322.872	Hex4HexNAc6Fuc3	C-F	0.000	t, L
182	2896.026	Hex ₇ HexNAc ₅ Fuc ₁ Neu5Ac ₂	H-FS	0.000	ų.
183	3431.227	Hex ₆ HexNAc ₇ Fuc ₁ Neu5Ac ₃	C-FS	0.000	₩.
184	3390.201	Hex7HexNAc6Fuc1Neu5Ac3	C-FS	0.000	\$ <u></u>
185	3286.190	Hex ₆ HexNAc ₇ Fuc ₂ Neu5Ac ₂	C-FS	0.000	÷.
186	3374.206	Hex ₆ HexNAc ₆ Fuc ₂ Neu5Ac ₃	C-FS	0.000	International de la construction de La construction de la construction de
187	2979.099	Hex5HexNAc7Fuc3Neu5Ac1	C-FS	0.000	t.
188	2760.025	Hex4HexNAc6Fuc4Neu5Ac1	C-FS	0.000	-
189	2499.899	Hex ₆ HexNAc ₆ Neu5Ac ₁	C-S	0.000	- \$
190	3156.127	Hex7HexNAc7Neu5Ac2	C-S	0.000	.
191	3082.090	Hex ₆ HexNAc ₆ Neu5Ac ₃	C-S	0.000	≣}⊷

192	2850.057	Hex ₆ HexNAc ₇ Fuc ₃	C-F	Undefined	A
193	3012.110	Hex7HexNAc7Fuc3	C-F	Undefined	ų.
194	2385.856	Hex ₆ HexNAc ₄ Fuc ₂ Neu5Ac ₁	H-FS	Undefined	
195	3141.152	Hex ₆ HexNAc ₇ Fuc ₃ Neu5Ac ₁	C-FS	Undefined	
196	2693.967	Hex7HexNAc4Fuc3Neu5Ac1	H-FS	Undefined	
197	3449.263	Hex7HexNAc7Fuc4Neu5Ac1	C-FS	Undefined	
198	3521.284	Hex ₆ HexNAc ₆ Fuc ₅ Neu5Ac ₂	C-FS	Undefined	t t

²³⁵ *The observed mass from analysis was used to match the theoretical mass in the retrosynthetic database¹.

Supplementary Table S3: Differentially expressed genes following *Salmonella* LT2 challenge. Caco-2 cells treated with *Salmonella* LT2 for 60 minutes displayed a significant induction directly involved in glycan metabolism. Gene induction reported as Log_2 ratio (*Salmonella* treated/not treated Caco-2) (p \leq 0.05, FDR 0.01).

Symbol	Entrez Gene Name	Log ₂ Ratio	Cellular Location
ALG3	ALG3, alpha-1,3- mannosyltransferase	1.004	Cytoplasm
ALG9	ALG9, alpha-1,2-mannosyltransferase	0.481	Cytoplasm
B3GALNT2	beta-1,3-N-acetylgalactosaminyltransferase 2	0.718	Cytoplasm
B3GALT5	UDP-Gal:betaGlcNAc beta 1,3- galactosyltransferase, polypeptide 5	0.098	Cytoplasm
B3GAT3	beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I)	0.576	Cytoplasm
B3GNT1	UDP-GlcNAc:betaGal beta-1,3- <i>N</i> - acetylglucosaminyltransferase 1	0.820	Cytoplasm
B3GNT2	UDP-GlcNAc:betaGal beta-1,3- <i>N</i> - acetylglucosaminyltransferase 2	0.159	Cytoplasm
B3GNT3	UDP-GlcNAc:betaGal beta-1,3- <i>N</i> - acetylglucosaminyltransferase 3	0.293	Cytoplasm
B3GNT4	UDP-GlcNAc:betaGal beta-1,3- <i>N</i> -acetylglucosaminyltransferase 4	0.366	Plasma Membrane
B3GNT7	UDP-GlcNAc:betaGal beta-1,3- <i>N</i> - acetylglucosaminyltransferase 7	0.726	Cytoplasm
B3GNTL1	UDP-GlcNAc:betaGal beta-1,3- <i>N</i> - acetylglucosaminyltransferase-like 1	0.811	Other
B4GALNT4	beta-1,4-N-acetyl-galactosaminyl transferase 4	0.189	Extracellular Space
B4GALT1	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1	1.371	Cytoplasm
B4GALT3	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 3	0.799	Cytoplasm
B4GALT7	xylosylprotein beta 1,4-galactosyltransferase, polypeptide 7	0.439	Cytoplasm
DPAGT1	dolichyl-phosphate (UDP- <i>N</i> -acetylglucosamine) <i>N</i> - acetylglucosaminephosphotransferase 1 (GlcNAc-1- P transferase)	1.063	Cytoplasm
EDEM1	ER degradation enhancer, mannosidase alpha-like 1	0.319	Cytoplasm
EDEM2	ER degradation enhancer, mannosidase alpha-like 2	0.532	Cytoplasm
FUCA2	fucosidase, alpha-L- 2, plasma	0.108	Extracellular Space
FUT1	fucosyltransferase 1 (galactoside 2-alpha-L- fucosyltransferase, H blood group)	0.522	Cytoplasm
FUT11	fucosyltransferase 11 (alpha (1,3) fucosyltransferase)	0.489	Cytoplasm

FUT2	fucosyltransferase 2 (secretor status included)	1.004	Cytoplasm
FUT4	fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)	0.250	Cytoplasm
FUT5	fucosyltransferase 5 (alpha (1,3) fucosyltransferase)	0.166	Cytoplasm
FUT6	fucosyltransferase 6 (alpha (1,3) fucosyltransferase)	0.345	Cytoplasm
FUT7	fucosyltransferase 7 (alpha (1,3) fucosyltransferase)	0.310	Cytoplasm
FUT9	fucosyltransferase 9 (alpha (1,3) fucosyltransferase)	0.063	Cytoplasm
POFUT1	<i>O</i> -fucosyltransferase 1 - protein	0.659	Cytoplasm
POFUT2	<i>O</i> -fucosyltransferase 2 - protein	0.622	Cytoplasm
GANAB	glucosidase, alpha; neutral AB	0.829	Cytoplasm
GLB1	galactosidase, beta 1	0.672	Cytoplasm
GLB1L2	galactosidase, beta 1-like 2	0.463	Other
MAN1A2	mannosidase, alpha, class 1A, member 2	0.256	Cytoplasm
MAN1B1	mannosidase, alpha, class 1B, member 1	0.583	Cytoplasm
MAN1C1	mannosidase, alpha, class 1C, member 1	0.391	Cytoplasm
MAN2A2	mannosidase, alpha, class 2A, member 2	0.342	Cytoplasm
MAN2B1	mannosidase, alpha, class 2B, member 1	0.863	Cytoplasm
MAN2B2	mannosidase, alpha, class 2B, member 2 mannosidase, alpha, class 2B, member 2	0.619	Cytoplasm
MAN2C1	mannosidase, alpha, class 2D, member 2 mannosidase, alpha, class 2C, member 1	0.624	Cytoplasm
MANBAL	mannosidase, beta A, lysosomal-like	0.577	Other
MANEAL	mannosidase, endo-alpha-like	0.235	Other
MGAT1	mannosyl (alpha-1,3-)-glycoprotein beta-1,2- <i>N</i> - acetylglucosaminyltransferase	0.559	Cytoplasm
MGAT3	mannosyl (beta-1,4-)-glycoprotein beta-1,4- <i>N</i> - acetylglucosaminyltransferase	0.712	Cytoplasm
MGAT4B	mannosyl (alpha-1,3-)-glycoprotein beta-1,4- <i>N</i> - acetylglucosaminyltransferase, isozyme B	0.810	Cytoplasm
MGAT5	mannosyl (alpha-1,6-)-glycoprotein beta-1,6- <i>N</i> -acetyl-glucosaminyltransferase	2.156	Cytoplasm
MOGS	mannosyl-oligosaccharide glucosidase	0.684	Cytoplasm
MOGAT3	monoacylglycerol O-acyltransferase 3	0.890	Other
NAGA	N-acetylgalactosaminidase, alpha-	0.942	Cytoplasm
NAGK	N-acetylglucosamine kinase	0.519	Cytoplasm
NAGLU	N-acetylglucosaminidase, alpha	0.479	Cytoplasm
NAGPA	<i>N</i> -acetylglucosamine-1-phosphodiester alpha- <i>N</i> -acetylglucosaminidase	0.380	Cytoplasm
NAGS	<i>N</i> -acetylglutamate synthase	0.614	Cytoplasm
NANS	<i>N</i> -acetylneuraminic acid synthase	0.152	Cytoplasm
NEU1	sialidase 1 (lysosomal sialidase)	0.789	Cytoplasm, lysosome
NEU3	sialidase 3 (membrane sialidase)	0.214	Plasma Membrane
SIGLEC11	sialic acid binding Ig-like lectin 11	0.483	Plasma Membrane
SIGLEC5	sialic acid binding Ig-like lectin 5	0.419	Plasma Membrane
SIGLEC6	sialic acid binding Ig-like lectin 6	0.545	Extracellular

			Space
ST3GAL1	ST3 beta-galactoside alpha-2,3-sialyltransferase 1	0.900	Cytoplasm
ST3GAL2	ST3 beta-galactoside alpha-2,3-sialyltransferase 2	0.742	Cytoplasm
ST3GAL4	ST3 beta-galactoside alpha-2,3-sialyltransferase 4	0.253	Cytoplasm
ST6GAL1	ST6 beta-galactosamide alpha-2,6-sialyltranferase 1	0.429	Cytoplasm
ST6GAL2	ST6 beta-galactosamide alpha-2,6-sialyltranferase 2	0.288	Cytoplasm
ST6GALNAC1	ST6 (alpha- <i>N</i> -acetyl-neuraminyl-2,3-beta-galactosyl- 1,3)- <i>N</i> -acetylgalactosaminide alpha-2,6- sialyltransferase 1	0.482	Cytoplasm
ST6GALNAC2	ST6 (alpha- <i>N</i> -acetyl-neuraminyl-2,3-beta-galactosyl- 1,3)- <i>N</i> -acetylgalactosaminide alpha-2,6- sialyltransferase 2	0.327	Cytoplasm
NGLY1	N-glycanase 1	0.957	Cytoplasm
STT3A	STT3A, subunit of the oligosaccharyltransferase complex (catalytic)	0.162	Plasma Membrane
STT3B	STT3B, subunit of the oligosaccharyltransferase complex (catalytic)	0.856	Cytoplasm

Supplementary Table S4. Human sialidase and sialyltransferase expression during infection with *Salmonella* LT2. Data adapted from IPA, Crespo

270 et al.² and this study.

Symbol	Name	Cellular Location	Preferred substrates	Glycan specificity	Function	Regulation
Neu1	Neuraminidase 1	Lysozome	Siaα2,3 Siaα2,6	Glycoproteins Glycolipids	Cleaves terminal sialic acid residues from substrates such as glycoproteins and glycolipids	Induced
Neu2	Neuraminidase 2	Cytosol	Siaα2,3 Siaα2,6	Glycoproteins Glycolipids	Cleaves terminal sialic acid residues from substrates such as glycoproteins and glycolipids	Not regulated
Neu3	Neuraminidase 3	Cell membrane	Siaα2,3 Siaα2,6	Gangliosides Lactosylceramide	Preferentially hydrolyzes gangliosides with alpha-2,3 or alpha- 2,6 linkages	Induced
Neu4	Neuraminidase 4	Inner membrane	Siaα2,3 Siaα2,6	Glycoproteins Glycolipids Gangliosides	Remove terminal sialic acid residues from various sialo derivatives	Not regulated
	ST3GAL family - catal	yzes the addit	tion of sialic acids to a termi	nal galactose of glyca		
ST3GAL-1	ST3 β-galactoside α- 2,3-sialyltransferase 1	Cell membrane Cytoplasm	Galβ1,3GalNAc	<i>O</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates	Induced
ST3GAL-2	ST3 β-galactoside α- 2,3-sialyltransferase 2	Cell membrane Cytoplasm	Galβ1,3GalNAc	<i>O</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to	Induced

					galactose-containing substrates	
ST3GAL-3	ST3 β-galactoside α- 2,3-sialyltransferase 3	Cell membrane Cytoplasm	Galβ1,3(4)GlcNAc	<i>O</i> -glycan, <i>N</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates	Not regulated
ST3GAL-4	ST3 β-galactoside α- 2,3-sialyltransferase 4	Cell membrane Cytoplasm	Galβ1,4(3)GlcNAc	<i>N</i> -glycan, <i>O</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates	Induced
ST3GAL-5	ST3 β-galactoside α- 2,3-sialyltransferase 5	Cell membrane Cytoplasm	Galβ1,4Glc-ceramide	Glycolipid	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates	Not regulated
ST3GAL-6	ST3 β-galactoside α- 2,3-sialyltransferase 6	Cell membrane Cytoplasm	Galβ1,4GlcNAc	<i>N</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates	Not regulated
	ST6GAL family -	transfers α-2,	6 linking sialic acids to a ter	minal galactose resid	ues of N-glycans	
ST6GAL-1	ST6 β-galactoside α- 2,6-sialyltransferase 1	Cell membrane Cytoplasm	Galβ1,4GlcNAc	<i>N</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates. Considered to be an inflammatory marker.	Induced
ST6GAL-2	ST6 β-galactoside α- 2,6-sialyltransferase 2	Cell membrane Cytoplasm	Galβ1,4GlcNAc	<i>N</i> -glycan	Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing	Induced

					substrates					
	ST6GALNAc family - adds sialic acids to terminal <i>N</i> -acetylgalactosamine residues of glycoproteins and glycolipids in an α-2,6 linkage									
ST6GALNAc-1	ST6 (α - <i>N</i> -acetyl- neuraminyl-2,3- β - galactosyl-1,3)- <i>N</i> - acetylgalactosaminid e α -2,6- sialyltransferase 1	Cell membrane Cytoplasm	GalNAcα1 Galβ1,3GalNAcα1	<i>O</i> -glycan	Transfers a sialic acid, <i>N</i> -acetylneuraminic acid (NeuAc), in an α- 2,6 linkage to O-linked GalNAc residues	Induced				
ST6GALNAc-2	ST6 (α - <i>N</i> -acetyl- neuraminyl-2,3- β - galactosyl-1,3)- <i>N</i> - acetylgalactosaminid e α -2,6- sialyltransferase 2	Cell membrane Cytoplasm	Galβ1,3GalNAcα1	<i>O</i> -glycan	Add sialic acids to the nonreducing ends of glycoconjugates. At the cell surface, these modifications have roles in cell-cell and cell-substrate interactions, bacterial adhesion, and protein targeting	Induced				
ST6GALNAc-3	ST6 (α - <i>N</i> -acetyl- neuraminyl-2,3- β - galactosyl-1,3)- <i>N</i> - acetylgalactosaminid e α -2,6- sialyltransferase 3	Cell membrane Cytoplasm	Siaα2,3Galβ1,3GalNAc	<i>O</i> -glycan	Transfer sialic acids from CMP-sialic acid to terminal positions of carbohydrate groups in glycoproteins and glycolipids	Not regulated				
ST6GALNAc-4	ST6 (α - <i>N</i> -acetyl- neuraminyl-2,3- β - galactosyl-1,3)- <i>N</i> - acetylgalactosaminid e α -2,6- sialyltransferase 4	Cell membrane Cytoplasm	Siaα2,3Galβ1,3GalNAc	<i>O</i> -glycan	 Catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates. The encoded protein prefers glycoproteins rather than glycolipids as substrates and shows 	Not regulated				

					restricted substrate specificity, utilizing only the trisaccharide sequence Neu5Ac- α - 2,3-Gal- β -1,3-GalNAc. In addition, it is involved in the synthesis of ganglioside GD1A from GM1B.	
ST6GALNAc-5	ST6 (α - <i>N</i> -acetyl- neuraminyl-2,3- β - galactosyl-1,3)- <i>N</i> - acetylgalactosaminid e α -2,6- sialyltransferase 5	Cell membrane Cytoplasm	GM1b	Glycolipid	Modify proteins and ceramides on the cell surface to alter cell-cell or cell-extracellular matrix interactions	Not regulated
ST6GALNAc-6	ST6 (α - <i>N</i> -acetyl- neuraminyl-2,3- β - galactosyl-1,3)- <i>N</i> - acetylgalactosaminid e α -2,6- sialyltransferase 6	Cell membrane Cytoplasm	All α-series gangliosides	Glycolipid	Modify proteins and ceramides on the cell surface to alter cell-cell or cell-extracellular matrix interactions	Not regulated
	ST8SIA family - prom	otes the linka	ge to another sialic acid resid (expressed in neural cells)		ns in an α-2,8 linkage	
ST8SIA-1	ST8 α- <i>N</i> -acetyl- neuraminide α-2,8- sialyltransferase 1	Cell membrane Cytoplasm	Siaα2,3Galβ1,4Glc- ceramide	Glycolipid	Catalyzes the transfer of sialic acid from CMP-sialic acid to GM3 to produce gangliosides GD3 and GT3	Not regulated
ST8SIA-2	ST8 α- <i>N</i> -acetyl- neuraminide α-2,8- sialyltransferase 2	Cell membrane Cytoplasm	Siaα2,3Galβ1,4GlcNAc	<i>N</i> -glycan	Catalyze the transfer of sialic acid from CMP- sialic acid to <i>N</i> -linked oligosaccharides and glycoproteins. The encoded protein may be	Not regulated

					found in the Golgi apparatus and may be involved in the production of polysialic acid, a modulator of the adhesive properties of neural cell adhesion molecule (NCAM1)	
ST8SIA-3	ST8 α- <i>N</i> -acetyl- neuraminide α-2,8- sialyltransferase 3	Cell membrane Cytoplasm	Siaα2,3Galβ1,4GlcNAc	<i>N</i> -glycan	Forms sialyl-α-2,8- sialyl-R linkages at the nonreducing termini of glycoconjugates	Not regulated
ST8SIA-4	ST8 α- <i>N</i> -acetyl- neuraminide α-2,8- sialyltransferase 4	Cell membrane Cytoplasm	(Sialα2,8)nSiaα2,3Galβ1-R	<i>N</i> -glycan	Catalyzes the polycondensation of α- 2,8-linked sialic acid required for the synthesis of polysialic acid, a modulator of the adhesive properties of neural cell adhesion molecule (NCAM1)	Not regulated
ST8SIA-5	ST8 α- <i>N</i> -acetyl- neuraminide α-2,8- sialyltransferase 5	Cell membrane Cytoplasm	GM1b, GT1b, GD1a, GD3	Glycolipid	Involved in the synthesis of gangliosides GD1c, GT1a, GQ1b, and GT3 from GD1a, GT1b, GM1b, and GD3, respectively	Not regulated
ST8SIA-6	ST8 α- <i>N</i> -acetyl- neuraminide α-2,8- sialyltransferase 6	Cell membrane Cytoplasm	Siaα2,3(6)Gal	Sialic acid on <i>O</i> -glycan	Synthesize sialylglycoconjugates	Not regulated

273 Supplementary Table S5: Strains and associated PCR primers used for deletion mutant construction. The deletion mutants that did not change

274 infection were not included in the genomic analysis.

Gene::Strain		
Name	Primers used for generation	Notes
<i>Salmonella</i> LT2	N/A	Wild-type strain Accession AE006468
∆STM2896 :: Cm LT2	5'-GTCGTACTATTGAAAAGCTGTCTTAATTTAATATTAACAGGATACCTATAGTGTAGGCTGGAGCTGCTTC-3' 5'-TAATTCAGCGATATCCAAATGTTGCATAGATCTTTTCCTTAATTAA	ΔinvA, strain is chloramphenicol (Cm) resistant Accession
∆STM4298::Cm LT2	5'-ACCGGGAACGCGTGCCACCATGAAGGTGTTCACTACTGTTCTGGAGAGTCGTGTAGGCTGGAGCTGCTTC-3' 5'-TCTGTTAGTAGAGGTTAAACGCCGGATCTGCCGTCCAGCGCGGCTGGAGAATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant Accession
ASTM1252::Cm LT2	5'-TTCATACGTAAAAAAGCTGATGCTTTTTACCTTATTTAATCGAGGCAGGTGTGTAGGCTGGAGCTGCTTC-3' 5'-CCGGGCAAGGCATTATTATTCCAGCGCTATCGGTTTCGACTGATAGCGCCATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant Accession
∆STM0928::Cm LT2	5'-ACTCTTCTGTGCTACTCGTCACATAAACAGAAATAACGGTAATCATATGTGTGTAGGCTGGAGCTGCTTC-3' 5'-TAGAGACTGCTGCTATATGTTATATAGCAGCAATGGCTATTTTTTGATGTATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant Accession
∆STM3664::Cm LT2	5'-CGCCTAAAAAACCAGGCAAGCTGATGAATATTGCCCACAAAGGATAGCGTGGTGTAGGCTGGAGCTGCTTC-3' 5'-TTTTGTTTTGAAGGGGCTACCGGTACGCGAGGAGACCGGTAGCGCCACGAATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant Accession
∆STM3537::Cm LT2	5'-AACCTGACGTTACCGCCGTTGGCGACGATCTGGCTGATGCGGGGGGGG	Strain is Cm resistant Accession
∆STM3338::Cm LT2	5'-GCGGAGCCGCCATTCGGCATAACGACAACAAAAATCGTCGGGAGAGTAAAGTGTAGGCTGGAGCTGCTTC-3' 5'-ACATACTACTCCCTTACAAATATTGCCCGGTTGAAAACCGGGCAAGCGGAATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant
∆STM3662::Cm LT2	5'-GTTTTGATAGTATCCATGAGTCCAGGTTCACTTTTGCAGGATATATCCTCGTGTAGGCTGGAGCTGCTTC-3' 5'-CGGATGGCGCTACGCTATCCGGCTTACAAGGCATCTGTAGGCTGGATAAAATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant
∆STM3663::Cm LT2	5'-TCGTGAAAAATAAAAGGTGTTGGAATGTATCAATCCGACCAGGAGACCTAGTGTAGGCTGGAGCTGCTTC-3' 5'-CTACAGATGCCTTGTAAGCCGGATAGCGTAGCGCCATCCGGCACACAGAAATGGGAATTAGCCATGGTCC-3'	Strain is Cm resistant

275

Supplementary Methods

278 Cell Culture

Colonic epithelial cells (Caco-2; ATCC HTB-37) were obtained from American Type Culture 279 280 Collection (Manassas, VA) and grown as per the manufacturer's instructions. Briefly, cells were seeded to a density of 10⁵ cells/cm² in 96-well plate using culture media comprising of DMEM/High Modified 281 (Thermo Scientific, Rockford, IL), non-essential amino acids (Thermo Scientific, Rockford, IL), 10mM 282 MOPS (Sigma, St. Louis, MO), 10 mM TES (Sigma, St. Louis, MO), 15 mM HEPES (Sigma, St. Louis, 283 MO) and 2 mM NaH₂PO₄ (Sigma, St. Louis, MO). Additionally, 16.6% fetal bovine serum (FBS) 284 285 (HyClone Laboratories, Logan, UT) was added to the cell culture media during maintenance and propagation between bacterial association assays. Cells were incubated at 37°C with 5% CO₂ to allow 286 differentiation before use in bacterial association assays^{3,4}. 287

288

289 Gene Deletion

Bacterial gene deletions were done as described by Datsenko and Wanner⁵. Deletion strains 290 were generated using the lambda-red recombinase method as described. A mini-prep kit (Qiagen, 291 292 Valencia, CA) was used to isolate plasmid pKD46 containing ampicillin resistance and λ Red 293 recombinase genes, from E. coli BW25141 (CGSC 7634) and plasmid pKD3 carrying chloramphenicol 294 resistance gene, from E. coli BW25141 (CGSC 7631). This plasmid pKD46 was electroporated into the 295 parent (Salmonella WT). Transformants were selected on LB agar containing 100 µg/ml ampicillin 296 (Sigma, St. Louis, MO). The parent strain containing pKD46 was grown in LB broth in the presence of 297 100 μ g/ml ampicillin and 100 mM L-arabinose to induce λ Red recombinase production. Plasmid pKD3 (CmR) was used as a template to generate PCR products for deletion of each gene of interest. The 298 299 primers used are shown in Supplementary Table S9. The purified PCR products were used for transformation by electroporation (Bio-Rad Gene Pulser) of electrocompetent *Salmonella* WT with induced λ Red recombinase. The transformants were selected on LB agar with 10 µg/ml chloramphenicol. The gene deletion/interruption was confirmed using PCR for each junction site created by the insertion.

304

305 Bacterial Association Measurements

306 *Invaded Salmonella determination*. To enumerate invaded bacteria, cells were incubated with 307 200 μ l of 100 μ g/ml gentamicin for 2 h at 37°C with 5% CO₂. Host cells incubated with cell culture 308 media (without gentamicin) were used to enumerate total host associated bacteria. Cells were again 309 washed once with 200 μ l 1X PBS buffer and lysed with 50 μ l of Warnex lysis buffer.

Quantitative bacterial analysis was done using qPCR with a CFX 96 Real Time System (BioRad, 310 311 Hercules, CA). Reactions were done using SYBR Green Supermix (BioRad) as per manufacturer's 312 instructions. 100 nM of forward (F) and reverse (R) PCR primers for EF-TU gene (F: 5'- ACG CGG TAT CAT CAA AGT GG - 3'; R: 5' - ATC GGG TGG ATC AGG GTA AC - 3') to quantify 313 314 Salmonella WT and GAPDH gene (F: 5'- ACC ACA GTC CAT GCC ATC AC - 3'; R: 5'-TCC ACC ACC CTG TTG CTG TA -3') to quantify Caco-2 cells (Integrated DNA technologies, Coralville, IA) 315 316 were used. The parameters for both primers was done using a denaturation step at 95°C for 5 min, 317 followed by 40 cycles of denaturation, annealing, and extension at 95°C for 15 s, 56°C for 30 s, 72°C for 30 s, respectively, and a final extension at 72°C for 1 min. The amplified product was verified using 318 melt curve analysis from 50°C to 95°C with a transition rate of 0.2°C/s. 319

320

321 Glycan Degradation

322 Cell membrane extraction. The cell pellets were suspended in 20 mM homogenized buffer 323 containing 0.25 M sucrose, 20 mM Hepes-KOH (pH 7.4), and a protease inhibitor. Cells were lysed on 324 ice using a sonicator (Osonica, CT) and cell lysates were centrifuged at 2,000 x g for 10 min to remove 325 the nuclear fraction and debris. The supernatant was collected and brought to 1 mL with homogenized buffer for ultracentrifugation at 60,000 rpm for 45 min at 4°C. The pellet was suspended in 0.2 M 326 327 Na₂CO₃ (pH 11) and pelleted by ultracentrifugation to fragment the endoplasmic reticulum. Finally, to remove the cytoplasmic fraction, the pellet was washed with water followed by ultracentrifugation. The 328 resulting membrane pellet was isolated and stored at -20°C until further processing. 329

Enzymatic Release of N-Glycans. Membrane pellets were suspended with 100 μ L of 100 mM NH₄HCO₃ in 5 mM dithiothreitol and heated for 10 s at 100°C to thermally denature the proteins. To release the glycans, 2 μ L of peptide N-glycosidase F (New England Biolabs, MA) were added to the samples and incubated at 60°C in a microwave reactor (CEM Corporation, NC) for 10 minutes at 20 watts. After addition of 400 μ L of ice-cold ethanol, the samples were frozen for 1 hour at -80°C to precipitate residual deglycosylated proteins and centrifuged for 30 minutes at 15,000 rpm. The supernatant containing the *N*-glycans was collected and dried.

N-Glycan Enrichment. Released *N*-glycans were purified by solid-phased extraction containing a porous graphitized carbon (PGC) matrix. PGC cartridges were conditioned with nanopure water followed by 80% ACN in 0.05% TFA (v/v) solution and again with nanopure water. Glycan samples were loaded onto the cartridge and washed with nanopure water at a flow rate of 1 mL/min to remove salts and buffer. *N*-glycans were eluted with a solution of 40% ACN in 0.05% TFA (v/v) and dried.

Nano-LC-MS and LC-MS/MS Analysis. Samples were reconstituted in 15 μL of nanopure water
 and analyzed using an Agilent HPLC-Chip-QTOF MS (Agilent, CA). The microfluidic nanospray chip
 is connected to the microwell plate sampler and consists of an enrichment column and LC analytical

345 column packed with porous graphitized carbon. For each sample, 8 μ L was injected onto the enrichment column and separated with a binary gradient: (A) 3% ACN and 0.1% formic acid (v/v) in water and (B) 346 90% ACN in 1% formic acid (v/v). The column was eluted at 0.3 µL/min for the nanopump and 4 347 348 μ L/min for the capillary pump. The 32-min gradient was programmed with the following proportions and time points: 5% to 32.8% B from 0 min to 13.3 min; 32.8% to 35.9% B from 13.3 min to 16.5 min; 349 35.9% to 100% B from 16.5 to 21.5 at 0.8 µL/min to flush out non-glycan compounds; 100% to 0% 350 351 from 21.5 to 32 min at 8 μ L/min to re-equilibrate the column before the next injection. The drying gas, 2 352 L of filtered nitrogen gas and 2 L of filtered dry compressed air, was set to a temperature of 325°C and a 353 flow rate of 4 L/min. MS spectra were acquired in positive ionization mode at an acquisition time of 1.5 s per spectrum over a mass range of m/z 500-2000. Mass discrimination inaccuracies were corrected 354 with reference masses of *m/z* 622.029, 922.010, 1221.991, and 1521.971. 355

Collision-induced dissociation (CID) was performed with nitrogen gas using a series of collision energies ($V_{collision}$) dependent on the *m/z* values of the *N*-glycans, based on the equation: $V_{collision} =$ slope (*m/z*) + offset, where the slope and offset were set at (1.8/100 Da) V and -2.4 V, respectively.

N-Glycan compositions were identified with an in-house retrosynthetic library according to accurate mass¹. Signals above a signal-to-noise ratio of 5.0 were filtered and deconvoluted using MassHunter Qualitative Analysis B.03.01 (Agilent Technologies, CA). Deconvoluted masses were compared to theoretical masses using a mass tolerance of 20 ppm and a false discovery rate of 0.6%. Relative abundances were determined by integrating the peak areas for observed glycan masses and normalizing to the summed peak areas of all glycans detected.

365

366 **Phylogenetic analysis of sialidases**

Sialidase sequence searches in NCBI using Geneious were used to identify homologues of *nanH* (1900 amino acid sequences) and *CHPNeu* (1100 amino acid sequences). Amino acid sequences were
 aligned with Geneious Alignment with default parameters^{6,7}. The multiple sequence analysis (MSA)
 were used to build phylogenetic trees using Geneious Tree Builder with Jukes-Cantor genetic distance
 model using Neighbor-Joining method with 1000 bootstrap replcations.

372

373 Supplementary References

- Kronewitter, S. R. *et al.* The development of retrosynthetic glycan libraries to profile and
 classify the human serum N-linked glycome. *Proteomics* 9, 2986-2994,
 doi:10.1002/pmic.200800760 (2009).
- 2 Crespo, H. J., Lau, J. T. & Videira, P. A. Dendritic cells: a spot on sialic Acid. *Frontiers in immunology* 4, 491, doi:10.3389/fimmu.2013.00491 (2013).
- 3 Ferruzza, S., Rossi, C., Scarino, M. L. & Sambuy, Y. A protocol for differentiation of human 379 intestinal Caco-2 cells in asymmetric serum-containing medium. Toxicology in vitro : an 380 381 international journal published in association with **BIBRA** 26. 1252-1255, doi:10.1016/j.tiv.2012.01.008 (2012). 382
- Sambuy, Y. *et al.* The Caco-2 cell line as a model of the intestinal barrier: influence of cell and
 culture-related factors on Caco-2 cell functional characteristics. *Cell biology and toxicology* 21,
 1-26, doi:10.1007/s10565-005-0085-6 (2005).
- 386 5 Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia
- 387 coli K-12 using PCR products. *Proceedings of the National Academy of Sciences of the United*
- 388 States of America **97**, 6640-6645, doi:10.1073/pnas.120163297 (2000).

- Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
 Nucleic acids research 32, 1792-1797, doi:10.1093/nar/gkh340 (2004).
- 391 7 Kearse, M. *et al.* Geneious Basic: an integrated and extendable desktop software platform for the
- 392 organization and analysis of sequence data. *Bioinformatics* 28, 1647-1649,
 393 doi:10.1093/bioinformatics/bts199 (2012).