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Fig. S1: Experimental setups for the different treatments. Physarum polycephalum3

biomass was placed in the center (yellow box). White boxes indicate blank agar sites4
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(non-rewarding), brown boxes indicate oat-agar food sites (rewarding). The first site on5

either arm was always a 5% oat-agar food site, to ensure the cell initialized exploration6

on both arms. A) 1 vs 1, B) 31 vs 31, C) 1 vs 8e, D) 8e vs 8e, E) 8r vs 8r (single7

example), F) 4e vs 8e, G) 8e vs 16e, H) 11e vs 16e, I) 4r vs 8r (single example), J) 8r vs8

16r (single example), K) 11r vs 16r (single example), L) ‘non-binary’ bandit (single9

example). Food sites were 5% oat-agar except in L) (see text), where the numbers give10

the percentage oat-agar in each reward site for a single example. See Fig. S2 for full11

details of the random distributions used in the experiments.12

13

Random distributions14

The locations of reward sites were selected by random sampling without15

replacement (using the sample() function in R 3.2.0) from a list of all available sites. We16

repeated this procedure independently for each arm.17

When the magnitude of the reward sites was randomized as well, we followed the18

following procedure (independently for each arm) to determine the value of each reward19

site:20

1. As for randomly-distributed, equally-rewarding sites, the locations of randomly-21

distributed, unequally-rewarding sites were selected by random sampling without22

replacement.23

2. All reward sites were allocated a minimum reward magnitude (1% oat-agar). All24

non-reward sites were kept empty (blank agar).25

3. We selected one of the reward sites by random sampling with replacement (using26

the sample() function in R 3.2.0). This site was given an extra 1% oat-agar, unless27
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it had already reached the maximum reward magnitude allowed for a single food28

site (8% oat-agar).29

4. We repeated step 2 until we reached the total amount of food reward allocated to30

the arm.31
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32

Fig. S2: Proportion of times each site contained reward for treatments; a) 8r vs 8r; b) 4r33

(red) vs 8r (blue); c) 11r (red) vs 16r (blue); d) 8r (red) vs 16r (blue); e) non-binary34

bandit, 2.5% arm (red) vs 5% arm (blue). The x axes of the graphs are laid out as if the35
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reader were looking at a bandit replicate, with the start block in the center (grey bar) and36

2 opposing arms of 31 agar blocks, each beginning at site 1 and expanding out to site 31.37

The start block at site 0 and the first sites on either arm (which were always 5% oat-agar)38

were excluded from the graphs (greyed bar). The dashed lines show the mean proportion39

over the entire arm. Mean site quality over all replicates for the non-binary bandit, 2.5%40

arm (red) vs 5% arm (blue), is shown in f). The solid line shows the mean oat-agar41

percentage for each site over all replicates. The shaded regions indicate standard error42

about the mean. The overall mean site quality for each arm is less than 2.5% and 5%43

because this calculation of the mean includes the blank agar sites on each arm.44

45

Table S1: Binomial test for proportion of replicates reaching the end of the HQ arm first,46

with the alternative hypothesis that the proportion will be due to random chance (0.5).47

Treatment Proportion reaching end of HQ arm first p-value

1 vs 8e 0.94 2.75 x10-4

4e vs 8e 0.92 3.59x10-5

4r vs 8r 0.75 3.93x10-3

11e vs 16e 0.96 5.72x10-6

11r vs 16r 0.78 1.19 x10-3

8e vs 16e 0.88 1.57 x10-4

8r vs 16r 0.83 6.96x10-5

Non-binary 0.81 3.13 x10-4

48

49

50

51
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Rational beliefs about food density52

Models 7 and 8 (see main text) depend on the cell’s current rational ‘belief’ about53

which arm contains the highest density of food, based on the observed successes and54

failures, along with the prior beliefs. Focusing on a single arm of the experiment, we55

specify as Q(x | A, B) the probability (from the perspective of the cell) that the food56

density on that arm is x, conditioned on the cell’s number of previous encounters with57

food-filled or empty blocks on that arm. We condition on two parameters, A and B, to58

denote how the cell ‘learns’ from experience. To determine the rational belief Q(x | A, B)59

we used a simple Bayesian update rule, based on a binomial likelihood function for60

receiving reward and a uniform flat prior on reward densities. We assign a uniform prior61

probability over all possible food densities before the cell has any experimental62

experience.63

64 (Food density = x) ≡ Q(x | A=1, B=1) = 1 ∀ 0 ≤ x ≤ 1
65

This flat prior can be expressed as a Beta distribution with parameters A = 1, B=1 (hence66

our use of these parameters in Q). The Beta distribution is a conjugate prior to the67

binomial likelihood, which specifies the likelihood (again from the cells perspective) of68

each new encounter with either food blocks or empty blocks. By the rules of conjugate69

updating, via Bayes rule, when the cell encounters blocks with or without food it will70

update its probability distribution over x to a Beta distribution with different parameters,71

adding one to A for each ‘success’ (encountering food) and adding one to B for each72

‘failure’ (encountering an empty block). Using this prior distribution therefore means73
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that once the cell has experienced (A-1) food blocks and (B-1) empty blocks on the focal74

arm, its rational belief about the food density will be:75

76

( | , ) = ( | , ) = (1 − )∫ (1 − )
77

To determine, for instance, the rational belief that the food density, y, on the right arm is78

greater than the food density, x, on the left, we simply calculate all the ways this could be79

true based on the current Q’s for each arm.80

81

( > ) = ( | , ) ( | , )
82

Noise83

We did not expect that the cell would follow any of these rules absolutely84

faithfully at all times. To account for this variability we introduced a ‘noise’ parameter, θ,85

such that the rule is followed with probability (1-θ), otherwise with probability θ the cell86

chooses a direction at random;87

88

P(mt = R | θ) = (1-θ) P(m_t = R) + θ/289

90

Bayesian performance evaluation via marginal-likelihood91

The performance of each model was evaluated by calculating the marginal92

likelihood of all observed moves, across all experiments and all treatments, accounting93
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for the ‘noise’, θ - the proportion of times that the cell makes a random choice rather than94

following the rule. Summing over possible values of θ, the marginal likelihood of a95

model M is thus given as;96

97

( | ) = (1 − ) ( | , )
+ 0.5 ((1 − ) ( | , ) + 0.5 )

98

where X indicates all the information the cell has from its previous movements, and D99

represents the data of all observed movements.100

Fig. S3 shows the marginal likelihoods of each model both on the full data set of101

all treatments, and for each treatment individually, normalized by the number of observed102

movements to indicate the geometric mean probability assigned to each movement.103

Values greater than 0.5 indicate that the model is predicting better than a null model104

where each movement is left or right with equal probability. The ratio of the marginal105

likelihoods of two models is termed the Bayes factor, Jeffreys (1) provides a scale for106

qualitative interpretation of Bayes factors, for example considering a Bayes factor of 3 to107

indicate ‘substantial’ evidence for model i over model j, and a Bayes factor of over 100 to108

be ‘decisive’. Quantitatively, the Bayes factor requires no reinterpretation and simply109

represents the relative probability that each model is correct. The Bayes factor between110

our best performing model (‘Relative Successes’) and its nearest competitor exceeds 1013,111
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and therefore the evidence is clearly decisively in favor of this model from among those112

we have tested.113

The Gittins algorithm contains a parameter, gamma, which controls the discount114

on possible future rewards. This is unique to the Gittins model and is not included in any115

of our heuristics. We wanted to be certain that the observed decisions of the cells could116

not be the result of applying the optimal Gittins algorithm, rather than one of our heuristic117

models. As such we gave the Gittins model (model 9) the freedom to select a discount118

parameter that best-fitted the observed decisions, rather than performing a Bayesian119

marginalization. Thus we were able to show that no set of parameters for the Gittins120

algorithm were able to predict the observed decisions better than our best-performing121

heuristic, ‘Relative Successes’.122

The results in Fig. S3 represent marginal likelihood evaluated on the basis of a123

uniform prior belief attributed to the cell; that is we assumed that before it observed any124

information about the food distribution the cell ‘believes’ that the food density is equally125

likely to be anywhere between 0 and 1. We relaxed this assumption by testing a wide126

range of other initial beliefs and found in all cases that the ordering of the models was127

unaffected. In particular ‘Relative Successes’ continued to outperform all other models128

by a large margin.129

130
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131

Fig. S3: Bayesian comparison between the proposed models. After calculating the132

marginal-likelihood of the observed decisions for each model, we normalized by the133

number of decisions to obtain the probability-per-decision. A value of 0.5 indicates the134

equivalent of a random prediction, thus values above 0.5 perform better than the135

‘Random’ model. Grey points indicate the results from the eleven different treatments for136

each model, while the larger red points indicate the values from all of the treatments137

combined. Overall the highlighted ‘Relative Successes’ model is strongly favored.138
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Relative Performance of Relative Successes Heuristic139

To benchmark the performance of the relative successes heuristic we compared its140

expected performance against the expected performance of random choice, and of the141

optimal Gittins index policy, for a variety of hyperparameters of the beta-distributed142

Bayesian prior (α and β), and discount rate over future rewards (1-γ), according to the143

equation;144

145

relative performance = (heuristic performance - random performance) / (Gittins146

performance - random performance),147

148

where we assume that the decision maker is equipped with the correct prior for the149

environment it is situated in. Sample relative performances are plotted in Fig. S4, which150

shows that as discount rate decreases (γ increases and future rewards become more151

important) the relative successes heuristic becomes closer to optimal for a larger range of152

possible priors. At γ = 0.9 the relative successes heuristic's performance is half way153

between random performance and the maximum possible performance as realized by the154

Gittins index strategy for almost all priors studied.155
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156

Fig. S4: Sensitivity of best-fitting heuristic’s relative performance (0 = random157

performance, 1 = optimal performance calculated according to Gittins index policy) to158

variation in hyperparameters of the beta-distribution describing food distribution (α and159

β) and discount rate applied to future rewards (γ). As the future becomes more important160

(γ increases) performance of the best-fitting heuristic relative to the theoretical optimum161

increases. With the exception of γ=0.9 highest relative performance is achieved when162

β>α, which corresponds to food distributions in which each foraging step is more likely163

to result in no food than in the discovery of food, suggesting the ancestral environments164

in which the heuristic evolved may have had this feature.165
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Relative Performance of Other Heuristics166

The following figures show difference in site discovery between HQ and LQ arms167

for the first time each site was discovered on either arm in each choice scenario (as in168

Fig. 2). Filled circles are experimental data means, error bars are the 95% confidence169

intervals. Solid lines are the pattern of site discovery predicted by particular heuristic,170

shaded regions are 1.96 standard errors.171

172

Fig. S5: Relative performance of ‘Autocorrelation’ heuristic.173

174
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175

Fig. S6: Relative performance of ‘Anti-autocorrelation’ heuristic.176

177
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178

Fig. S7: Relative performance of ‘Most successes’ heuristic.179

180
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181

Fig. S8: Relative performance of ‘Highest mean’ heuristic.182

183
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184

Fig. S9: Relative performance of ‘Relative means’ heuristic.185

186
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187

Fig. S10: Relative performance of ‘Most likely’ heuristic.188

189
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190

Fig. S11: Relative performance of ‘Probability matching’ heuristic.191

192
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193

Fig. S12: Relative performance of ‘‘Chemotaxis’ heuristic.194

195
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