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GLM point process model fitting

Our use of the GLM point process model broadly follows that of Pillow et al.[1].
Here we describe specific configuration choices and adaptations we made to the
model.

Choice of nonlinearity

In the GLM point process model, the instantaneous firing rate λj(t) is given by
a linear-nonlinear link function, meaning that influences are linearly summed
and then passed through a nonlinearity:

λj(t) = σ

bj +
∑
j

Kij ∗ yi(t)

 (1)

where we have used bj to represent the constant base rate of calling for j, Kij

the influence kernel from individual i to j, ∗ the convolution operation, and
yi(t) the sequence of events emitted by individual i represented as a spike train.

The function σ is a nonlinear mapping which can be freely chosen within
certain constraints; these include that the function must be monotonic and non-
negative [2]. If σ is the exponential function, then this has the effect of trans-
forming (1) so that the influences combine in multiplicative fashion rather than
additive. If σ is the rectifier function max(0, ·), this preserves linear additivity
except that negative values are clipped away. However, the rectifier function
can be difficult to perform numerical optimisation upon, because a large part
of its domain gives zero gradient, and often a smooth approximation is used in
its place, which we describe shortly.

Within this simple model, in which animal behaviour is embedded in rather
abstract form, it is not immediately clear which nonlinearity should be chosen.
(Note that the method is rather robust to misspecification, meaning that under
mild conditions it yields consistent kernel estimates even if the wrong link func-
tion is used [2, Section 5].) Hence we chose to use these simple nonlinearities and
use model comparison to choose between additive and multiplicative models, as
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Supplementary Figure 1. Nonlinearity functions.

was done in [1]. In early tests we found that the strict rectifier function often
failed in optimisation, and so in its place we used the smooth softplus function

λ(x) = log(1 + exp(cx))/c (2)

where we introduced the constant scaling factor c to bring the function closer to
the rectifier nonlinearity. The softplus function is not scale-invariant and so its
effect (and hence the desirable choice of c) depends on the dynamic range of the
data. We used c = 10, chosen to be large enough to bring the function close to
a true rectifier effect without leading to numerical optimisation problems (Fig.
1).

When given an input of zero, our softplus nonlinearity yields a rate of around
0.07 (one call expected every 15 seconds). Negative inputs suppress the rate even
further: in theory the rate never quite reaches zero, while with the machine
precision used here, a zero rate of emission is produced from an input of around
−4 or less. Positive inputs become increasingly close to the identity mapping;
any input larger than around 0.3 is within 1 per cent deviation from identity.

Typical values of the base-rate parameter b in fitted models were approxi-
mately around ±0.15. The inter-individual variation in b was smaller than the
general scale of the influence kernels.

Kernel basis functions

The model works by parametrically combining a set of basis functions to create
each kernel. This keeps the dimensionality of the model tractable while allowing
for great flexibility in the range of kernels possible. We used a set of raised cosine
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Supplementary Figure 2. The raised-cosine basis functions used to
compose each kernel.

functions (Fig. 2), distributed with a logarithmically-warped time axis to offer
more detail at short time lags. In initial tests we first used 8 basis functions. We
varied the degree of warping to inspect whether the choice of bases had a strong
influence on the resulting kernel fits. We found that with 8 basis functions
the placement of the bases had an observable effect on the undulations of the
median fitted kernels, but if we increased to 16 basis functions the recovered
kernels were much more stable to the exact choice of basis. We therefore used
16 basis functions for the main analyses. The same set of basis functions was
used for all network connections, including self-self and self-other.

Regularisation

The model fitting method finds a single point estimate of the best fitting pa-
rameters. This is done by maximum likelihood in [1], but it can also be done by
maximum a posteriori (MAP; also referred to as a type of penalised maximum
likelihood) within the same framework [2]. It is widely known that maximum
likelihood methods are vulnerable to overfitting in the presence of limited data.
We therefore used MAP regularisation in the GLM model to help prevent over-
fitting at small data sizes and to stabilise the fitted parameter estimates. We
used standard L2 (Euclidean) regularisation when fitting the model, which is
equivalent to a zero-centred Gaussian prior on the coefficients (Fig. 3). We did
not regularise the parameter b—the fixed base-rate for each individual to emit
an event in absence of stimulation—allowing it to take any value with equal
prior probability.
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Supplementary Figure 3. Ten randomly-sampled examples of kernels from
the prior distribution of the GLM model (i.e. without any exposure to data),
to illustrate the range of kernels that can be fitted and also some qualities of
the prior. Note the symmetry of the prior distribution around zero, and the
relative smoothness of kernels at long lag times—because the basis functions
are distributed exponentially with respect to lag time.

Principal components analysis of kernels

Here we give further details of the PCA analysis of recovered kernels, and show
the principal component kernel shapes.

For each dataset the PCA projection was applied across all relationship types
and all days pooled together, so that the two-dimensional space recovered was a
common space representing the general variability of kernels recovered in each
study. We did not centre the data (did not subtract the mean) so that the
origin retained its meaning as independence. Since the polarity of the direction
represented by each principal component is arbitrary, we chose to orient each of
the principal components so that the average loading of each was positive.

Principal components were dissimilar across the two datasets (Fig. 4), re-
flecting the different tendencies discussed in the main text. The amount of
variance explained by the first two PCs was 91.4% for zf4f but 67.2% in the
Gill et al. dataset, likely reflecting the greater variety of social connections un-
derlying the latter.

Synthetic A→B→C example and data size tests

The A→B→C synthetic example given in Fig. 1 of the main document was
generated from a simplified model that is not an exact match to the GLM
or MRP generative models, in order to provide a clear example of indirect
causation and to examine how the various analyses behave. First, ‘A’ events
were generated from a homogeneous Poisson process with fixed rate of 0.1 Hz.
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Supplementary Figure 4. Kernel shapes represented by the first two
principal components in zf4f (upper) and Gill et al. (lower).

Then, for the two links in the causal chain, A→B and B→C, each possible
source event generated a target event with a probability of 0.9, and if it did
so, with a time gap drawn from a log-Gaussian distribution with log-mean 0.75
and log-standard deviation 0.5 (using the natural logarithm). The parameter
values here were manually chosen to be on a similar timescale as zebra finch
calls, but not intended to be a likely zebra finch scenario, rather to demonstrate
the common-cause phenomenon. The generative model just described does not
quite match the GLM point process model since no more than one event can
be generated as a result of any other event, and there is no nonlinearity in
the influence on rates. Nor does it match a pure Markov model: although each
A→B→C sequence considered on its own is Markovian, the process can generate
overlapping sequences meaning the overall sequence has no upper bound on
its history dependence. This was therefore a useful test of how the different
analysis procedures respond to data coming from a simple causal chain. Using
this procedure, a timeline of length 96,000 seconds was generated.

For cross-correlation, we used a custom Python script to implement cross-
correlation with a maximum lag of 2.5 seconds. Spike data were smoothed using
a Hann window of duration 200 ms.

Data size tests In order to get a practical impression of the data size re-
quirements of the GLM method compared against cross-correlation, we applied
both methods to the synthetic A→B→C model while varying the number of
data points fed into the analysis. This way we could guarantee that the source
of data was a stationary system with unchanging characteristics, and inspect
convergence as data size increased.

The analysis models are not designed to recover the same information, so
they are not suitable for direct numerical comparison (e.g. mean squared er-

5



ror between models). We quantified the stability of each model via Spearman
correlation against the largest fit (Fig. 5, right). Under the A→B→C model
there are six inter-individual interactions to analyse, or three if undirected pairs
are considered. We visualised the fitted parameters by allocating each of the
three pairings to a colour (red/green/blue) and superimposing the three cross-
correlation curves. The GLM model recovers six inter-individual kernels so we
concatenated each kernel with its kernel in the opposite direction, to produce
three shapes that could be colour-mapped in the same way.

We visualised the parameters recovered from the cross-correlation and GLM
models, and also the GLM model without regularisation (i.e. maximum likeli-
hood rather than maximum a posteriori fitting) (Fig. 5, left).

We found that cross-correlation and GLMpp converged at similar rates,
reaching acceptable stability at around 1024 data points. As expected, the
use of regularisation in the GLM model helped prevent overfitting at small data
sizes, and to stabilise the fitted parameter estimates. We therefore used this
same regularisation for all fits reported in the paper.

Simulating from the fitted models

Since our model is generative, we can draw newly simulated event sequences
from the fitted models, which will thus be qualitatively similar to the original
material. These sequences can be of arbitrary length and could even be gen-
erated in online (real-time) fashion. We can also use resimulation as another
approach to inspecting and validating the fitted models.

As a simple illustration of this, we resimulated 3600 seconds of calls using
the models fitted to the zf4f data. We resimulated the group (Fig. 7), and
also we resimulated a single individual taken out of the group context, i.e.
with only base-rate and self-self effects (Fig. 8). Between these two different
simulations, the effect of group interactions was visible in the data: the same
virtual individual produced calls at a rate of one per 14 seconds when simulated
alone, and at a rate of one every 6.5 seconds when simulated in the group.
(The real data contained a call from that individual every 4.6 seconds.) The
resimulated group data replicates qualitative aspects of the real data (Fig. 6)
such as the bursty communal calling, though appearing slightly less dense.

Re-running the GLM fitting procedure on the resimulated data for the group
recovered kernels with the same shapes as in the source model (Fig. 10).

Further plots from datasets

For the zf4f dataset, overall calling rates per individual ranged from 468 to 888
calls per hour (Table 1), and rates exhibited some modulation across each hour
(Fig. 9). A composite of all the influence kernels fitted to the dataset is shown
in Fig. 11.

For completeness we show the fitted kernels for all possible call-type inter-
actions, for a specific day of interest in the Gill et al.dataset (Fig. 12).
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Supplementary Figure 5. Convergence characteristics of three models:
cross-correlation (upper), GLMpp (middle) and GLMpp without regularisation
(lower). In each case we provided the model with varying amounts of data
sampled from the ABC synthetic model. For each model, we take the largest
fit as the gold standard, and inspect how far the smaller fits deviate from it.
This is summarised in the right-hand column by the Spearman correlation.
The left-hand column shows a visualisation of the models at each step, to show
more detail than the correlations. Within each visualisation, a column shows
the estimated kernels (or cross-correlation curves) superimposed as channels of
an RGB image, and then normalised for dynamic range. The amount of data
used increases towards the right: of interest is at what left-right point the
visual image stabilises. The lower plot appears bolder because the
unregularised GLM tended to dramatically large parameter values when
overfitting to small datasets. In the upper plot, the yellow band happens to
reflect the false-positive A→C cross-correlation peak.

Supplementary Table 1. Total calls emitted by each bird in the
zf4f recording study.

Individual Calls in Day 2 session Calls in Day 3 session
1 761 736
2 888 468
3 481 850
4 856 612
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Supplementary Figure 6. Timeline plot of an excerpt from Session 2 of zf4f.
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Supplementary Figure 7. Timeline plot of artificial data resimulated from
fitted model for Session 2 of zf4f.
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Supplementary Figure 8. Timeline plot of artificial data resimulated from
fitted model for Session 2 of zf4f, in this case with only one virtual bird and no
group.
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Supplementary Figure 9. Density plots of the calling rates of each bird in
the zf4f recording study. Rates are calculated from call times using kernel
density estimation with a bandwidth of 15 seconds.
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Supplementary Figure 10. Kernels recovered from the resimulated data.
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Supplementary Figure 11. Aggregate view of the influence kernels
recovered from our two study sessions with four female zebra finches, as Fig. 3
in the main document but showing every one of the 16 curves fitted to each
session, rather than confidence intervals.
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